Determination of a space-dependent force function in the one-dimensional wave equation
DOI:
https://doi.org/10.14713/ejbe.v12i1.1838Keywords:
Inverse force problem, Regularization, L-curve, Boundary element method, Wave equation.Abstract
The determination of an unknown spacewice dependent force function acting on a vibrating string from over-specied Cauchy boundary data is investigated numerically using the boundary element method (BEM) combined with a regularized method of separating variables. This linear inverse problem is ill-posed since small errors in the input data cause large errors in the output force solution. Consequently, when the input data is contaminated with noise we use the Tikhonov regularization method in order to obtain a stable solution. The choice of the regularization parameter is based on the L-curve method. Numerical results show that the solution is accurate for exact data and stable for noisy data.
Downloads
Published
Issue
Section
License
Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings. The author has agreed to the journal's author's agreement.
All articles in this journal are licensed under a Creative Commons Attribution-Noncommercial 4.0 United States License