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Abstract

The Fast Multipole Method was introduced by Greengard and Rokhlin
in a seminal paper appeared in 1987 for studying large systems of particle
interactions with reduced algorithmic and memory complexity [60].
Developments of the original idea are successfully applied to the analysis
of many scientific and engineering problems of practical interest. In
scattering analysis, multipole techniques may enable to reduce the
computational complexity of iterative solution procedures involving dense
matrices arising from the discretization of integral operators from O(n2)
to O(n log n) arithmetic operations. In this paper we discuss recent
algorithmic developments of algebraic preconditioning techniques for
the Fast Multipole Method for 2D and 3D scattering problems. We
focus on design aspects, implementation details, numerical scalability,
parallel performance on emerging computer systems, and give some
minor emphasis to theoretical aspects as well. Thanks to the use of
iterative techniques and efficient parallel preconditioners, fast integral
solvers involving tens of million unknowns are nowadays feasible and can
be integrated in the design processes.

Keywords: algebraic preconditioners, Fast Multipole Method, Krylov
solvers, electromagnetic scattering applications, Maxwell’s equations.

1 Introduction

An efficient solution of the Maxwell’s equations is a critical component of the
simulation of many realistic industrial processes like the Radar Cross Section
(RCS) calculation of arbitrarily shaped electrically large objects like aircrafts,
the analysis of electromagnetic (EM) compatibility of electrical devices with
their environment, the design of absorbing materials, radars, antennas and
many others. Scattering problems address the physical issue of computing the
diffraction pattern of the EM radiation that is propagated by a complex body
illuminated by an incident wave. Objects of interest in real-life applications
can have large electrical size compared to the wavelength so that the numerical
solution becomes extremely demanding for large computer resources and fast
numerical algorithms. Until the emergence of high-performance computing in
the early eighties, scattering analysis was affordable only by using approximate

B. Carpentieri / Electronic Journal of Boundary Elements, Vol. 7, No. 1, pp. 13-49 (2009)

13



Figure 1: Example of surface discretization in an integral equation context. Each
unknown of the problem is associated to an edge in the mesh. The geometry
represents the ogive of a missile and has size 2.5 m. Courtesy of EADS-CCR
Toulouse.

high frequency techniques such as the shooting and bouncing ray method
(SBR) [87]. Basically, ray-based asymptotic methods like SBR and uniform
theory of diffraction are based on the idea that EM scattering becomes a
localized phenomenon as the size of the scatterer increases with respect to
the wavelength. In the last few decades, thanks to the impressive advances
in computer technology and the introduction of innovative algorithms with
limited computational and memory requirement, a rigorous numerical solution
has become possible for many practical applications. Differential equation
solvers are a popular solution approach for EM problems because of the
sparsity structure of the pertinent matrices arising from the discretization.
Finite-difference (FD) [80, 119], finite-element (FE) [110, 124], or finite-volume
(FV) methods [16, 17] can be used to discretize the Maxwell’s equations into
a volume surrounding the scatterer and generate a sparse linear system of
equations. Prior to the discretization phase, the domain outside the object is
truncated by imposing an artificial boundary that simulates an infinite volume,
e.g. [12,61,93,73]. An alternative approach based on integral equation methods
solves for the electric and the magnetic currents induced on the surface of the
object. Integral methods require a simple description of the surface of the target
by means of triangular facets (see an example of discretization in Figure 1) so
that a 3D problem is reduced to solving a 2D surface problem, simplifying
considerably the mesh generation especially in the case of moving objects.
Surface discretizations may limit the effect of grid dispersion errors which occur
when a wave assumes a different phase velocity on the grid compared to the
exact solution. Grid dispersion errors accumulate in space and may introduce
spurious solutions over large 3D simulation regions [7, 74, 86]. For second-
order accurate differential schemes, to alleviate the problem the grid density
may grow up to O((kd)3) unknowns in 2D and of O((kd)4.5) in 3D where k is
the wavenumber and d is the approximate diameter of the simulation region,
increasing considerably the overall solution cost also for practical (i.e. finite)
values of wavenumber [36].
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In an integral equation context, the standard EM scattering problem can be
formulated in variational form as follows:

Find the surface current ~j such that for all tangential test functions ~jt, we
have

∫

Γ

∫

Γ

G(|y − x|)
(
~j(x) ·~jt(y)− 1

k2
divΓ

~j(x) · divΓ
~jt(y)

)
dxdy =

=
i

kZ0

∫

Γ

~Einc(x) ·~jt(x)dx. (1)

Eqn. (1) is called Electric Field Integral Equation (EFIE); we denote by

G(|y − x|) =
eik|y−x|

4π|y − x| the Green’s function of Helmholtz equation, Γ is

the boundary of the object, k the wave number and Z0 =
√

µ0/ε0 the
characteristic impedance of vacuum (ε is the electric permittivity and µ the
magnetic permeability). Given a continuously differentiable vector field ~j(x)
represented in Cartesian coordinates on a 3D Euclidean space as ~j(x1, x2, x3) =
jx1(x1, x2, x3)~ex1 + jx2(x1, x2, x3)~ex2 + jx3(x1, x2, x3)~ex3 , where ~ex1 , ~ex2 , ~ex3 are
the unit basis vectors of the Euclidean space, we denote by div~j(x) the
divergence operator defined as

div~j(x) =
∂jx1

∂x1
+

∂jx2

∂x2
+

∂jx3

∂x3
.

The EFIE formulation can be applied to arbitrary geometries such as those
with cavities, disconnected parts, breaks on the surface, and is very popular
in industry, see e.g. [14, 88]. For closed targets, the Magnetic Field Integral
Equation (MFIE) can be used, which reads

∫

Γ

(~Rext j ∧ ~ν).~jt +
1
2

∫

Γ

~j.~jt = −
∫

Γ

( ~Hinc ∧ ~ν).~jt.

The operator ~Rext j is defined as

~Rext j(y) =
∫

Γ

~gradyG(|y − x|) ∧~j(x)dx,

and is evaluated in the domain exterior to the object. Both formulations suffer
from interior resonances which make the numerical solution more problematic
at some frequencies known as resonant frequencies, especially for large objects.
The problem can be solved by combining linearly EFIE and MFIE. The resulting
integral equation, known as Combined Field Integral Equation (CFIE), is the
formulation of choice for closed targets.

On discretizing Eqn. (1) in space by the Method of Moments (MoM) over a
mesh containing n edges, the surface current ~j is expanded into a set of basis
functions {~ϕi}1≤i≤n with compact support (the Rao-Wilton-Glisson basis [100]
is a popular choice), then the integral equation is applied to a set of tangential
test functions ~jt. Selecting ~jt = ~ϕj , we are led to compute the set of coefficients
{λi}1≤i≤n such that
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∑

1≤i≤n

λi

[∫

Γ

∫

Γ

G (|y − x|)
(

~ϕi(x) · ~ϕj(x)− 1
k2

divΓ~ϕi(x) · divΓ~ϕj(y)
)

dxdy

]
=

=
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(x)dx, (2)

for each 1 ≤ i ≤ n. The set of equations (2) can be recast in matrix form as

Aλ = b, (3)

where A = [Aij ] and b = [bi] have elements

Aij =
∫

Γ

∫

Γ

G (|y − x|)
(

~ϕi(x) · ~ϕj(y)− 1
k2

divΓ~ϕi(x) · divΓ~ϕj(y)
)

dxdy,

bj =
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(y)dx.

The set of unknowns are associated with the vectorial flux across an edge
in the mesh. The coefficient matrix A is dense complex symmetric for EFIE,
unsymmetric for CFIE and MFIE. The right-hand side varies with the frequency
and the direction of the illuminating wave.

Linear systems issued from boundary element discretizations can be large
in applications, although their size n is typically much smaller compared to
those arising from FE or FV formulations of the same problem. The number
of unknowns grows linearly with the size of the scatterer and quadratically
with the frequency of the incoming radiation [9]. A scattering simulation
involving targets of size in the order of a few tens of wavelength, illuminated at
approximately one GHz of frequency, may lead to meshes with a few million
points [117]. Efficient out-of-core dense direct solvers based on variants of
Gaussian elimination have been proposed for solving blocks of right-hand sides,
see e.g. [1, 37]. However, the memory requirements of direct methods are not
affordable for solving realistic applications even on modern parallel computers.
Memory concerns are thoroughly addressed by Trefethen et al. [121]:

Evidently, in the course of forty-five years, the dimensions of tractable [dense] matrix

problems have increased by a factor of 103. This progress is impressive, but it pales

beside the progress achieved by computer hardware in the same period - a speedup by a

factor of 109, from flops to gigaflops. In the fact that 109 is the cube of 103, we see played

out in history the O(m3) bottleneck of direct matrix algorithms.

Iterative Krylov methods are based on matrix-vector (M-V) multiplications
and can solve the problems of space. A significant amount of work
has been devoted to design fast algorithms that can reduce the O(n2)
computational complexity for the M-V product with dense matrices arising
from the discretization of boundary element equations, like the Fast Multipole
Method (FMM) [60, 102], the panel clustering method [66], the H-matrix
approach [65], wavelet techniques [3, 15], the adaptive cross approximation
method [8], the impedance matrix localization method [21], the multilevel
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matrix decomposition algorithm [94] and others. The combination of Krylov
solvers and FMM is a popular solution approach. For Helmholtz and
Maxwell’s equations, FMM algorithms enable to speedup M-V multiplications
with boundary element matrices down to O(n log n) algorithmic and memory
complexity depending on the problem and on the specific implementation, see
e.g. [48, 53, 111, 47, 35, 46, 120]. Two-level implementations of FMM can reduce
the cost of the matrix-vector product operation from O(n2) to O(n3/2), a three
level algorithm down to O(n4/3) and the Multilevel Fast Multipole Algorithm
(MLFMA) to O(n log n).

Briefly, multipole techniques exploit the rapid decay of the Green’s function
and compute interactions amongst degrees of freedom in the mesh at different
levels of accuracy depending on their physical distance. The 3D mesh of the
object is partitioned recursively into boxes of roughly equal size until the size
becomes small compared with the wavelength. The hierarchical partitioning of
the object is typically represented using a tree-structured data called oct-tree
(see Figure 2). Multipole coefficients are computed for all boxes starting from
the smallest ones, that are the leaves, and recursively for each parent cube in
the tree by summing together multipole coefficients of its children. Interactions
of degrees of freedom within one observation box and its close neighboring boxes
are computed exactly using MoM; depending on the frequency, they generate
between 1% and 2% of the entries of A. Interactions with boxes that are not
neighbors of the observation box but whose parent in the oct-tree is a neighbor of
the box parent are computed using FMM (see Figure 3). All other interactions
are computed hierarchically on a coarser level by traversing the oct-tree.

In the last ten years, significant research efforts have been devoted
to implement multiple techniques efficiently on distributed memory parallel
computers, resulting in competitive application codes provably scalable to
several million discretization points, for instance the FISC code developed
at University of Illinois [113, 112, 114], the INRIA/EADS integral equation
code AS ELFIP [117, 118], the Bilkent University code [54, 55] and others.
Load imbalances and great demands for high bandwidth are challenging
penalty factors for implementing hierarchical methods on modern petascale-
class computer systems with tens (or hundreds) of thousands of processors. In
this paper we address the other critical component of the iterative solution in
this context that is the design of effective preconditioners for FMM.

2 Preconditioning the FMM

Krylov subspace methods solve a matrix problem in α · Niter · O(M-V) flops
where we denote by O(M-V) the complexity of the M-V product operation that
is related to the number of multipole levels. The constant α depends on the
implementation of the specific iterative method; Niter is the number of iterations
necessary to achieve a certain accuracy depending on the integral operator as
well as on object shape and material. Problems with cavities or open surfaces
may require many more iterations than closed objects of the same physical
size. Additionally, nonuniform meshes tend to produce ill-conditioned MoM
matrices which make the approximate solution less accurate. Convergence can
be accelerated by preconditioning, which transforms the original linear system
into an equivalent one with better spectral properties, i.e. with most eigenvalues
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Figure 2: The oct-tree data structure representation in the FMM algorithm.
Each cube has up to eight children and one parent box except for the largest
cube which encloses the whole domain.

clustered close to one. The transformed system assumes the form M−1Ax =
M−1b, or AM−1y = b with x = M−1y, depending if one preconditions from
the left or from the right; the matrix M is called preconditioner. When the
number of unknowns n is related to the wavenumber, the iteration count of
Krylov solvers may increase as O(n0.5) on EFIE, see for instance experiments
reported in [112]. Thus preconditioning is a critical issue. On CFIE the number
of iterations typically increases more slowly, as O(n0.25). Preconditioning is
not required for solving smooth and compact Fredholm integral operators of
the second kind, while it is critical for non-compact operators associated with
singular integral equations [4, 72]. Some optimal analytic preconditioners have
been proposed yielding formulations that require less iterations to converge,
e.g. [39, 5, 115]. However, they are problem-dependent. In this paper we
consider a purely algebraic approach where the preconditioner is computed using
information contained in the coefficient matrix of the linear system and can be
developed from existent public-domain software implementations (see [106, 33]
for a review of methods). Although far from optimal for any specific problem,
algebraic methods can be applied to different operators and to changes in
the geometry only by tuning a few parameters. We overview techniques that
maintain the O(n log n) algorithmic and memory complexity of FMM in the
construction and in the application phase, and can be combined with little
implementation effort with the data structure of multipole codes. We address
concerns of parallelization, scalability with respect to problem size, numerical
stability; the latter aspect is especially relevant to solving indefinite integral
formulations [104]. The substantial improvement on the speed of convergence
of iterative methods motivates the research efforts put in the design of robust
preconditioners. With the availability of a high quality preconditioner, the
choice of the Krylov subspace accelerator is often not so critical, see e.g. [57,106].
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Figure 3: Interactions in the multilevel FMM algorithm. Interactions for the
gray boxes are computed directly. We denote by dashed lines cubes that are
not neighbors of the cube itself but whose parent is a neighbor of the cube’s
parent. These interactions are computed using the FMM. All other interactions
are computed hierarchically on a coarser level.

For memory concerns, most preconditioning techniques for dense matrices
proposed in the literature are computed decomposing the linear system in the
form

(S + B)x = b (4)

where S is a sparse matrix retaining the most relevant contributions to the
singular integrals and is easy to invert, while B can be dense. For boundary
integral equations of the Fredholm type, if the continuous operator S underlying
S is bounded and the operator B underlying B is compact, then S−1B is compact
and

S−1 (S + B) = I + S−1B
so that we may expect that the preconditioned system

(
I + S−1B

)
x = S−1b

has a good clusterization of eigenvalues close to one, see e.g. [30] and [33, pp.
182-185].

The simplest approach to compute the local matrix S is to drop the
small entries of A below a threshold [75, 123, 42]. However, all the entries
of A are often not explicitly available and it becomes necessary to use other
information, extracted from either the connectivity graph or the physical mesh
of the problem. In the integral equation context, the surface of the object is
discretized using a triangular mesh. Each degree of freedom (DOF), representing
an unknown in the linear system, corresponds to an edge. The sparsity pattern
for any row of S can be defined according to the concept of level k neighbours.
Level 1 neighbours of a DOF are the DOF plus the four DOFs belonging to
the two triangles that share the edge corresponding to the DOF itself. Level 2
neighbours are all the level 1 neighbours plus the DOFs in the triangles that are
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neighbours of the two triangles considered at level 1, and so forth. The large
entries in A derive from the interaction of a very localized set of edges in the
mesh so that by retaining a few levels of neighbours for each DOF an effective
approximation is likely to be constructed. Three levels can generally provide a
good pattern for S [123, 97, 34]. Clearly, we can select the pattern for S also
using physical information, that is: for each edge we select all those edges within
a sufficiently large sphere that defines our geometric neighbourhood [22, 123].
Comparative experiments amongst different approaches suggest that there is
little to choose. All three pattern selection strategies (i.e. matrix-, graph-
and mesh-based approaches) can provide very good approximations to the
dense coefficient matrix for very low sparsity ratio, between 1% and 2% [22].
The mesh-based approach is straightforward to implement in FMM codes that
typically partition the object using geometric information. Multipole algorithms
yield a matrix decomposition

A = Adiag + Anear + Afar, (5)

where Adiag is the block diagonal part of A associated with interactions of
basis functions belonging to the same box, Anear is the block near-diagonal part
of A associated with interactions within one level of neighboring boxes (they
are 8 in 2D and 26 in 3D), and Afar is the far-field part of A. Therefore, in a
multipole setting a suitable choice for the local matrix may be S = Adiag+Anear.

To show the difficulty of the problem, in Table 1 we report on experiments
with the GMRES solver and various algebraic preconditioners applied to a
scattering problem from an open cylindric surface illuminated at 200 MHz of
frequency and modeled using EFIE. The mesh is depicted in Figure 4. In

Figure 4: Test problem: an open cylindric surface.

connection with GMRES, we consider preconditioners of either implicit type
that approximately factorize S or of explicit type that approximately invert S,
all having roughly the same number of nonzero entries. We adopt the following
acronyms:

• None, means that no preconditioner is used;

• Diag, a simple diagonal scaling, i.e. M is the diagonal of S;
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• SSOR, the symmetric successive overrelaxation method

M =
(D+ωE)D−1(D+ωET )

ω(2−ω) , where we denote by D the diagonal of
S and E is the strict lower triangular part of S;

• ILU(0) [106], the lower/upper incomplete LU factorization M = L̃Ũ ,
L̃ ≈ L, Ũ ≈ U , S = LU , where the sparsity pattern of L̃ (resp. Ũ) is
equal to that of the lower (resp. upper) triangular part of S;

• SPAI [62], an approximate inverse preconditioner M ≈ S−1 computed
by minimizing ‖I − SM‖F . The same pattern of S is imposed to M .

• AINV [10], a sparse approximate inverse computed in factorized form by
applying an incomplete biconjugation process to S, and dropping small
entries below a threshold in the inverse factors.

Density of S = 3.18% - Density of M = 1.99%.

Precond. GMRES(30) GMRES(80) GMRES(∞)

None - - 302
Diag - - 272
SSOR - 717 184
ILU(0) - 454 135
SPAI 308 70 70
AINV - - -

Table 1: Number of iterations using GMRES and various preconditioners on a
test problem, a cylinder with an open surface, discretized with n = 1299 edges.
The tolerance is set to 10−8. The symbol ’-’ means that no convergence was
achieved after 1000 iterations. The results are for right preconditioning.

We clearly see the failures of many standard methods. Simple
preconditioners like the diagonal of A, diagonal blocks, or a band are effective
when the coefficient matrix has some degree of diagonal dominance [113]. Block
diagonal (Jacobi) preconditioner is generally more robust than its pointwise
counterpart and requires insignificant CPU time and storage in the setup phase.
Each diagonal block is a LU factorization of the corresponding diagonal block of
Adiag and is overwritten by the L and the U factors. For ill-conditioned and/or
indefinite formulations like EFIE, block Jacobi is not robust and can be only
partially improved by re-ordering the matrix prior to the factorization [43, 52],
so that more robust methods are beginning to be investigated.

The quest for optimal dense matrix solvers to use in large-scale applications
codes and the availability of efficient parallel MLFMA implementations
have produced a vivid cross-fertilization of ideas, algorithms, benchmarking
activities in the field of preconditioning rather than a specialization in specific
technologies. Many techniques that have proved successful for the field of partial
differential equations have been adopted for integral equations. However, while
there may be general lessons to be learned from results in other areas, it is still
not clear which solution technology is better to use. In the next sections we
identify some suitable class of algebraic methods for solving large dense linear
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systems arising from the discretization of EM scattering applications expressed
in an integral formulation and we discuss some relevant trends and problems.

3 Incomplete LU (ILU) factorization methods

ILU -type algorithms compute an approximate triangular decomposition of the
coefficient matrix by means of an incomplete Gaussian elimination process. The
preconditioner has the form M = L̃Ũ , L̃ ≈ L, Ũ ≈ U where we denote by L, U
the lower/upper triangular factors of S. Early experiments with ILU on dense
matrices are found in [24,109]. Incomplete factorizations are applied successfully
for solving integral equation models arising in electromagnetic scattering [91],
bioelectric inverse problems [98], magnetoencephalography [99] as well as other
applications. On CFIE, simple pattern selection strategies for the triangular
factors are effective. Selecting the nonzero pattern of S for the triangular factors
results in robust incomplete factorizations that may deliver rates of convergence
similar to a complete LU factorization and are clearly more effective than block
Jacobi preconditioners [91]. For solving indefinite systems arising from EFIE,
it is often necessary to enlarge the pattern of the approximate factors to reduce
both number of iterations and solution time. In this case the maximum number
of entries per column is usually taken equal to the number of nonzeros of S in
the attempt to maintain the algorithmic and memory complexity of MLFMA.
This value is easy to determine after the initial setup of the problem. Small
entries computed during the factorization are dropped below a threshold, to
make storage and application of the preconditioner more economical [84,24,91].

On indefinite systems small pivots often appear during the factorization,
producing ill-conditioned factors that may result in unstable triangular
solves [24]. The same behavior is observed in the sparse case as well, see e.g. [38].
We illustrate this phenomenon in Table 2 where we show experiments with an
ILU preconditioner computed from S using different values of density on a
sphere of 1 meter length illuminated at 300 MHz. The problem is modeled
using EFIE; the mesh is discretized with 2430 edges (Figure 5). We use the
pattern selection strategy based on levels of fill-in described in [106]. The set
F of fill-in entries to be kept for the approximate lower triangular factor L is
defined by

F = { (k, i) | lev(lk,i) ≤ ` } ,

where the integer ` denotes a user specified maximal fill-in level. The level
lev(lk,i) of the coefficient lk,i of L is computed as follows:

Initialization

lev(lk,i) =





0 if lk,i 6= 0 or k = i

∞ otherwise
Factorization

lev(lk,i) = min { lev(lk,i) , lev(li,j) + lev(lk,j) + 1 } .

We denote the resulting preconditioner by ILU(`) [106]. Observe that the larger
`, the higher the density of the preconditioner. We report on experiments with
various values for the density of the matrix S and levels of fill-in. We can see that
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Figure 5: A model problem: a sphere of 1 meter length, illuminated at 300 MHz.
The mesh is discretized with 2430 edges.

increasing the fill-in parameter may produce much more robust preconditioners
than ILU(0) applied to a denser sparse approximation of the original matrix;
ILU(1) may deliver a good rate of convergence provided the coefficient matrix
is not too sparse. However, the factorization of a very sparse approximation
(up to 2%) of the coefficient matrix can be stable and accelerate significantly
the convergence, especially if at least one level of fill-in is retained. For higher
values of the density of S, the factors may become progressively ill-conditioned,
the triangular solves unstable and consequently the preconditioner is useless.
The table also shows that ill-conditioning of the factors is not related to ill-
conditioning of A. The problem can be detected before starting the iterations
using condition estimators such as

∥∥∥(L · U)−1
e
∥∥∥
∞

(we denote by e the vector of

all ones) which provides an upper bound for
∥∥∥(L · U)−1

∥∥∥
∞

and can be applied
at the cost of one forward and one backward substitution. If ill-conditioning
is revealed, possible remedies may be shifting the diagonal entries, reordering
the matrix elements prior to computing the factorization, or applying numerical
pivoting during the factorization. A complex diagonal shift can help to compute
a more stable preconditioner by shifting along the imaginary axis the eigenvalues
close to zero in the spectrum of the coefficient matrix. However, it is not easy
to tune a priori and its effect on the convergence is difficult to predict [24].
Experiments by Malas et al. show that pivoting can be a robust approach to
overcome the problem [91]; in this case, the ith row of the factor is computed
as soon as permtol × |sij | > |sii|, where permtol is the permutation tolerance
and sij are the entries of S.

For sequential runs, incomplete factorization methods are very competitive.
The implementation can be carried out block-wise reflecting the block structure
of S. Block row operations may replace standard row operations and diagonal
blocks are inverted as pivots instead of the diagonal entries, enabling to use
higher level BLAS that exploits data locality in the cache memory. The
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Density of S = 2%
IC(level) Density of L κ∞(L) GMRES(30) GMRES(50)
IC(0) 2.0% 2 · 103 378 245
IC(1) 5.1% 1 · 103 79 68
IC(2) 9.1% 9 · 102 58 48

Density of S = 4%
IC(level) Density of L κ∞(L) GMRES(30) GMRES(50)
IC(0) 4.0% 6 · 109 – –
IC(1) 11.7% 2 · 105 – –
IC(2) 19.0% 7 · 103 40 38

Density of S = 6%
IC(level) Density of L κ∞(L) GMRES(30) GMRES(50)
IC(0) 6.0% 8 · 1011 – –
IC(1) 18.8% 5 · 1011 – –
IC(2) 29.6% 7 · 104 – –

Table 2: Number of iterations of GMRES varying the sparsity level of S
and the level of fill-in of the approximate factor L on the model problem of
Figure 5 (n = 2430, κ∞(A) = ‖A‖∞‖A−1‖∞ ≈ O(102)). The symbol ’-’ means
that convergence was not obtained after 500 iterations.

block size is equal to the number of nodes per leaf-box. The parallelization
of ILU-type algorithms is not straightforward but can be carried out using
domain decomposition techniques based on the Schur complement at the cost
of moderate computational overhead [89,95,106].

To date, at our best knowledge the largest experiment with ILU-type
preconditioners on dense matrices has been reported by Malas et al. at Bilkent
University on surface scattering problems on the order of O(105) unknowns [91].
At University of Kentucky, Lee et al. apply ILU for solving hybrid surface-
volume integral equations on the order of O(105) unknowns as well [84].
Although inherently sequential, efficient parallel implementations of ILU are
today available. The scalability of ILU preconditioners for solving very large
dense complex problems is an open issue to explore.

4 Approximate inverse

A substantial amount of work has been recently devoted to methods
that approximate the inverse of the coefficient matrix explicitly, see for
instance [97, 2, 31, 108]. The approximate inverse, denoted by M ≈ S−1, is
applied as preconditioner at each step of an iterative solver by carrying out
one or more sparse M-V products depending on the implementation. The
approximate inverse may be computed in factorized form as M = G̃Z̃, where
G̃ ≈ U−1 and Z̃ ≈ U−1 are approximation of the inverse triangular factors of S.
This approach is clearly attractive for parallelism and may be numerically more
stable than ILU-type algorithms which require triangular solves [51,77,6, 63].

The boundary element method discretizes integral equations on the surface
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of the scattering object, introducing a very localized strong coupling among
the edges in the underlying mesh. Each edge is strongly connected to only a
few neighbours while, although not null, far-away connections are much weaker.
Therefore, a very sparse matrix can still retain the most relevant contributions
from the singular integrals that give rise to dense matrices. Owing to the decay
of the Green’s function, the inverse of A may exhibit a very similar structure to
A. In Figures 6 it is possible to observe the typical decay of the discrete Green’s
function of surface integral equations. The model problem is a small sphere,
which is representative of the general trend. The discrete Green’s function
can be considered as a row or as a column of the exact inverse depicted on
the physical computational grid. In the density coloured plot, large to small
magnitude entries are depicted in different colours, from red to green, yellow
and blue. The discrete Green’s function peaks at a point, then it decays rapidly,
and far from the diagonal only a small set of entries have large magnitude.
Clearly, sparse approximate inverses can capture effectively such rapid decay
and may be a suitable approach for this problem class. A good pattern for the
approximate inverse is likely to be the nonzero pattern of a sparse approximation
to A, constructed by dropping all the entries lower than a prescribed global
threshold (see Figure 7).

(a) Pattern of the large
entries of A

(b) Pattern of the large
entries of A−1

Figure 6: Structure of the large entries of A (on the left) and of A−1 (on the
right). Large to small entries are depicted in different colors, from red to green,
yellow and blue. The test problem is a small sphere.

Several research groups have successfully applied approximate inverse
preconditioners in combination with MLFMA, for instance at CERFACS [25]
and at Bilkent University [90] for solving large surface scattering problems,
and at University of Kentucky [85] for solving hybrid surface-volume integral
problems. In these studies the pattern of the preconditioner is computed from
the nonzero structure of the near-field multipole matrix S and is applied prior
to computing the entries of M , simplifying the setup phase considerably. The
actual entries of M may be computed by minimizing the error matrix ‖I−SM‖F

for right preconditioning (‖I − MS‖F resp. left preconditioning). The
Frobenius-norm allows to decouple the constrained minimization problem into
n independent linear least-squares problems, one for each column (resp. row) of
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(a) Sparsity pattern of
sparsified(A−1)
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(b) Sparsity pattern of
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Figure 7: Sparsity patterns of a A−1 (on the left) and of L−1 (on the right)
after dropping all the entries of relative magnitude smaller than 5.0×10−2. The
test problem is a small sphere.

M when preconditioning from the right (resp. from the left). The independence
of the least-squares problems follows immediately from the identity

‖I − SM‖2F =
n∑

j=1

‖ej − Sm•j‖22, (6)

where ej is the jth canonical unit vector and m•j is the column vector
representing the jth column of M . In the case of right preconditioning, the
analogous relation

‖I −MS‖2F = ‖I − ST MT ‖2F =
n∑

j=1

‖ej − ST mj•‖22 (7)

holds, where mj• is the column vector representing the jth row of M . Note
that the preconditioner is not guaranteed to be nonsingular and in general it
does not preserve any symmetry of A; some possible remedies are discussed
in [62,24].

If the nonzero pattern of M

P = { (i, j) ∈ [1, n]2 s.t. mij 6= 0 }

is applied in advance, the structure for the jth column of M is automatically
determined, and defined as

Cj = {i ∈ [1, n] s.t. (i, j) ∈ P}.

The least-squares solution involves only those columns of S indexed by Cj ; we
indicate this subset by S(:, Cj). Because S is sparse, many rows in S(:, Cj) are
usually null, not affecting the solution of the least-squares problems (6). Thus
denoting by Rj the set of indices corresponding to the nonzero rows in S(:, Cj),
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by Ŝ = S(Rj , Cj), by m̂j = mj(Cj), and by êj = ej(Cj), the actual “reduced”
least-squares problems to solve are

min‖êj − Ŝm̂j‖2, j = 1, .., n. (8)

Usually problems (8) have much smaller size than problems (6) and can be
efficiently solved by dense QR factorization.

The preconditioner can be combined with the box-wise data structure of
multipole codes illustrated in Figure 2 using a block strategy. All the columns
of M that are associated with edges belonging to the same box have an identical
nonzero pattern. This means that only one block dense QR factorization per
leaf box in the oct-tree needs to be computed. The least-squares can be solved
independently on different processors. The use of BLAS-3 operations enables
to exploit data locality in the cache memory and may reduce the setup cost of
the approximate inverse on the order of O(n) arithmetic operations [25].

In Table 3 we show experiments extracted from [25] to illustrate the
numerical behavior of the Frobenius-norm minimization method combined with
parallel MLFMA for solving Eqn (1). We refer to this preconditioner as SPAI
(SParse Approximate Inverse). The sparsity pattern is taken equal to that
of the near-field matrix S = Adiag + Anear. The test problems, presented in
Figure 8, arise from realistic RCS calculations in industry. The results reported
in Table 3 refer to EFIE. Large problem size is obtained by illuminating the
same obstacle at increasing frequency; the value of the frequency is in the range
between 12 and 42 GHz for the Cetaf problem (i.e. 24-84λ of physical size),
between 2.3 and 11.4 GHz for the aircraft problem (14-73λ) and around 10 GHz
(approximately 30λ) for the Cobra problem. The experiments are run in single
precision complex arithmetic on eight processors of a Compaq Alpha server.
The Compaq Alpha server is a cluster of Symmetric Multi-Processors. Each
node consists of four DEC Alpha processors (EV 6, 1.3 GFlops peak) that share
512 MB of memory. On that computer, the temporary disk space that can be
used by the out-of-core solver is around 189 GB. We report on the number of
M-V products and solution time for GMRES; in the table, “d” means day, “h”
hour and “m” minute. The number of multipole levels in MLFMA is selected
adaptively by the algorithm; more precisely, the object is partitioned until the
size of the leaf-boxes in the oct-tree is half of a wavelength [117]. The tolerance
for GMRES is fixed equal to 10−3 on the normwise backward error ||r||

||b|| , where
r denotes the residual and b the right-hand side of the linear system. This level
of accuracy is on the same order of magnitude as the relative error of the M-V
product operation in our multipole code, estimated comparing with the level 2
BLAS routine GEMV on a small setup. It can be considered accurate enough
for engineering purposes as it enables the correct reconstruction of the RCS of
the object.

We see that the iterative solver enables to solve fairly large problems,
although it does not scale very well with the number of unknowns. For
GMRES(∞) the increase in the iteration count is less significant, even though
convergence cannot be obtained on the largest systems because we either exceed
the memory limits or the time limit allocated to a single run. On the Cetaf
geometry, the solution time for the GMRES method increases superlinearly
for small and medium problems, but nearly quadratically for large problems.
On the largest test case, discretized with one million unknowns, unrestarted
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GMRES does not converge after 750 iterations requiring more than nine hours
of computation on 32 processors. The Airbus aircraft is very difficult to solve
because the mesh has many surface details and the discretization matrices
become ill-conditioned. On small and medium problems, the number of GMRES
iterations increases with the problem size, and the solution time increases
superlinearly. On the largest test case, discretized with one million unknowns,
full GMRES exceeds the memory limit on 64 processors. In this case, the
use of large restarts (120 in this table) does not enable convergence within
2000 iterations except on a small mesh of size 94704. From a timing point of
view, the solution of full GMRES is strongly affected by the orthogonalisation
involved in the Arnoldi procedure. On the Cetaf problem discretized with
531900 points, the number of iterations of GMRES(120) is twice as large with
respect to full GMRES, but GMRES(120) is about twice as cheap. Provided
we get convergence, the use of a large restart often reduces the solution time
even though it significantly deteriorates the convergence. We mention that
the solution of the problem associated with the aircraft with 213084 degrees of
freedom modeled using the CFIE is much simpler; it requires only 129 iterations
of unpreconditioned full GMRES and 22 iterations of preconditioned full
GMRES. Furthermore, preconditioned full GMRES converges in 24 iterations
on the aircraft with more than a million degrees of freedom. A sequential direct
solver would require 37 years of computation and 8 Tbytes of storage!

In Table 4 we illustrate the parallel scalability of the approximate inverse.
Problems of increasing size are solved on a larger number of processors, keeping
the number of unknowns per processor constant. We observe the very good
parallel scalability of the construction and of the application of the approximate
inverse that makes it a suitable candidate for massively parallel implementation.

The main focus of the paper is to discuss recent developments on optimal
matrix solvers for EFIE, which is tough to solve using iterative methods. The
advantages of this formulation are numerous; in particular, it does not require
any hypothesis on the geometry of the object. We should nevertheless mention
that for closed geometries the CFIE can also be used. The linear systems
arising from the CFIE formulation are much easier to solve. For instance
the solution of the problem associated with the aircraft with 213084 degrees
of freedom requires only 129 iterations of unpreconditioned full GMRES, and
22 iterations of preconditioned full GMRES. Furthermore, preconditioned full
GMRES converges in 24 iterations on the aircraft with more than a million
degrees of freedom. Because the linear systems arising from the CFIE are not
challenging from a linear algebra point of view, we do not consider them further
in this study.

Approximate inverse techniques are typically more stable than incomplete
factorization methods which may suffer from ill-conditioning of the triangular
factors especially in the indefinite case as discussed in Section 3. However,
a potential source of instability may arise in the presence of clusters of
small or isolated eigenvalues in the spectrum of the preconditioned matrix.
The Frobenius-norm minimization method succeeds in grouping most of the
eigenvalues close to point one of the spectrum but it often leaves a few very
small eigenvalues close to the origin. This can be observed in Figure 9, where we
depict the eigenvalue distribution of the preconditioned matrix for the cylinder
problem of Figure 4 that is fairly representative of the general case. It is known
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(a) The aircraft problem. The physical size
is 1.8 m × 1.9 m × 0.65 m.
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Y

Z

(b) The Cetaf problem. The geometry
represents a wing with a slit. The physical
size is 50 cm × 30 cm × 5 cm.
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Z

(c) The Cobra problem, a complex geometry
that represents an air intake. Its size is
67.9 cm × 23.3 cm × 11 cm.

Figure 8: Geometries considered for the numerical experiments. Courtesy of
EADS-CCR Toulouse.

that the convergence of Krylov methods for solving Ax = b can be described in
terms of polynomial approximations. Fast convergence is achieved if a low order
polynomial can be found which has value 1 at the origin and approximately 0
on the set of the eigenvalues of A, e.g. [107,59]. Clearly, the presence of spread
or very small eigenvalues makes this difficult to achieve. Deflating algorithms
have been used as an attempt of a possible remedy [23]. They apply low-
rank matrix updates on top of an existing preconditioner and have the effect
of shifting to one a small cluster of small eigenvalues of the preconditioned
matrix, resulting in more favorable spectral properties and consequently faster
convergence of Krylov methods. Basically, deflation proceeds by projecting
the preconditioned system in the coarse (i.e. low-dimensional) space associated
with approximate eigenvectors corresponding to its smallest eigenvalues and
solving it exactly in this coarse space; the information is then used to update
the preconditioned residual. In the formulation introduced in [23], the spectrally
updated preconditioner assumes the form M̂ = M + Mupd, where we denote by
Mupd = VεÂ

−1UH
ε M , by Vε (resp. Uε) the set of right (resp. left) eigenvectors
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Cetaf

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time
86256 0.18 4m 656 / 1h 25m 1546 / 1h 44m

134775 0.11 6m 618 / 1h 45m 1125 / 1h 55m
264156 0.06 13m 710 / 9h 1373 / 4h 46m
531900 0.03 20m 844 / 1d 18m 1717 / 14h 8m

1056636 0.01 37m T.L.E. / >9h(32) - / > 1d
Aircraft

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time
94704 0.28 11m 746 / 2h 9m 1956 / 3h 13m

213084 0.13 31m 973 / 7h 19m - / 7h 56m
591900 0.09 1h 30m 1461 / 16h 42m(64) - / 1d 57m

1160124 0.02 3h 24m M.L.E.(64) / N.A. - / > 4d
Cobra

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time
60695 0.24 2m 369 / 26m 516 / 23m

179460 0.09 7m 353 / 1h 11m 406 / 1h 2m

Table 3: Number of matrix-vector products and elapsed time required to
converge on two problems on 8 processors of the Compaq machine, except those
marked with (k), that were run on k processors. Tolerance for the iterative
solution was 10−3. The symbol ’-’ means that no convergence was achieved in
2000 iterations. Acronyms: N.A. ≡ not available. M.L.E. ≡ memory limits
exceeded, T.L.E. ≡ CPU time limits exceeded.

of MA associated with the set of eigenvalues λi with |λi| ≤ ε and Â = UH
ε MAVε

is the projection of MA on the coarse space. Observe that Mupd is a low-rank
matrix, hence it is computationally cheap to apply. The updated preconditioned
matrix M̂A preserves the eigenvectors of MA and has eigenvalues ηi given by

{
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Similar formulations hold for right preconditioning. Weaker formulations, that
do not preserve the eigenvectors of MA but require only the computation of Vε

are also possible to derive and are discussed in [23].
In Table 5 we illustrate the effect of applying spectral updates to the

Frobenius-norm minimization preconditioner for the Almond problem, a
standard electromagnetic test case representing the ogive of a missile. The
geometry is depicted in Figure 1. We see a noticeable enhancement of the
performance of the iterative solver. By selecting up to ten eigenpairs the
number of iterations decreases by nearly a factor of two. The gain in terms
of iterations is strongly related to the magnitude of the shifted eigenvalues [23].
A speedup in convergence is obtained when a full cluster of small eigenvalues
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Parallel scalability results
Problem

size Nb procs Construction
time (sec)

Elapsed time
precond (sec)

Elapsed time
mat-vec (sec)

112908 8 513 0.39 1.77
221952 16 497 0.43 2.15
342732 24 523 0.47 3.10
451632 32 509 0.48 2.80
900912 64 514 0.60 3.80

Table 4: Parallel scalability of the implementation on the aircraft problem.
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Figure 9: Eigenvalue distribution in the complex plane of the coefficient matrix
for a model problem that is representative of the general trend. The problem is
the cylinder of Figure 4 modeled using the EFIE formulation.

is completely removed from the spectrum. The application of the correction
update at each iteration step costs 2nk + k2 where k is the size of the coarse
space. In the reported experiments, the eigenvectors are computed in forward
mode by ARPACK in a preprocessing phase. To give an idea of this cost,
the eigencomputation of 30 eigenvectors on the Almond problem takes 1100
matrix-vector products and 1h of time on 32 processors (while constructing
the approximate inverse, which is 0.19 dense, takes 6m on 8 processors). This
extra-cost is quickly amortized as many right-hand sides have usually to be
solved to compute the so called radar cross section where linear systems with
the same coefficient matrix and up to hundreds of different right-hand sides
are solved, ranging over the complete set of directions between the transmitter
and the receiver. Extensive experiments with deflation techniques for solving
electromagnetic scattering problems are found in [92,23].

Finally we mention that Carpentieri et al. report on disappointing
experiments with algorithms that compute the approximate inverse methods in
factorized form [24]. The reason of failure is that for many integral formulations
like EFIE and CFIE, the inverse factors may be totally unstructured as shown
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Almond problem, n = 104793 - frequency = 2.6 GHz
Dimension of the coarse space

0 10 30 50
GMRES(50) 1524 (1h 17m) 883 (45m) 368 (20m) 284 (15m)
GMRES(∞) 242 (14m) 134 (9m) 92 (6m) 77 (6m)

Table 5: Experiments with sparse approximate inverses and spectral deflation.
We show the number of iterations of GMRES and the solution time using an
increasing number of deflated eigenvalues. The scattering problem is modeled
using EFIE.

in Figure 7(b). In this case, selecting a priori a sparse pattern for the factors
can be extremely hard as no real structures are revealed, preventing the use of
techniques like FSAI [75,77,76,79,78] which require to provide such pattern in
advance. In Figure 10 we plot the magnitude of the entries in the first column
of A−1 and L−1 with respect to their row index (very similar behavior has been
observed for all the other columns). Those plots indicate that dynamic pattern
selection strategies, that drop small entries below a user-defined threshold during
the computation like in the AINV preconditioner [10, 11], may be very difficult
to tune as they can easily discard relevant information and lead to a very
poor preconditioner. Selecting too small a threshold would retain too many
entries and lead to a fairly dense preconditioner. A larger threshold would
yield a sparser preconditioner but might discard too many entries of moderate
magnitude that are important for the preconditioner. For those problems,
finding the appropriate threshold to enable a good trade-off between sparsity
and numerical efficiency is challenging and very problem-dependent.
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Figure 10: Histograms of the magnitude of the entries of one column of A−1

and its lower triangular factor on a small sphere. A similar behavior has been
observed for all the other columns.
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5 MLFMA-based preconditioners

Known bottlenecks of parallel solvers are lack of scalability and needs of
large memory and interconnection bandwidth. Ideally, one wants to achieve
constant solution time when problem size and number of processors increase
proportionately. In the experiments reported in Table 3, the solution time for
GMRES increases nearly quadratically for large problems. Scalability is difficult
to achieve especially at high frequency due to the standard implementation
choice of relating the size of the smallest boxes of the oct-tree to the wavelength.
The density of the preconditioner decreases for increasing problem size because
the pattern of the sparse approximate inverse is computed from the box-wise
partitioning of the object. When the near-field matrix S is very sparse and
each degree of freedom is coupled only to one level of neighboring cubes, any
information associated with the far-field may be totally lost.

Multipole approximations of an integral operator compute the near-
field mesh interactions exactly and yield low-rank representations of the
far-field interactions that are natural to incorporate in the design of the
preconditioner [116]. Carpentieri et al. use multiple expansions of the
integral operator not only for the M-V product operation, but also for the
preconditioning operation that is performed at each iteration of a Krylov
method. As preconditioner, they carry out a few steps of an inner
Krylov method. The outer iterative solver must allow to use variable
preconditioning [25], for instance FGMRES [105] and GMRES? [49, p. 91] may
be used; the latter reduces to GMRESR [50] when the inner solver is GMRES.
A sketch of the algorithm is presented in Figure 11. Iterations are stopped
after a fixed number of steps. The inner solver is preconditioned to decrease
rapidly the residual, typically in a few number of steps, and the matrix-vector
products in the inner and outer solvers are carried out using MLFMA with
different levels of accuracy. Highly accurate MLFMA is applied in the outer
iterations which govern the final accuracy; less accurate MLFMA is applied in
the inner iterations that only attempt to give a rough approximation of the
solution. We remark that different accuracy for the M-V calculation can be
implemented by tuning various parameters in MLFMA such as the size of the
smallest box, the number of multipole levels and of integration points [117]. In
early experiments by Grama et al. with inner-outer schemes combined with
MLFMA, no preconditioner was used in the inner iterations and the complexity
was higher than for standard GMRES [58].

We report some results to show the beneficial effect of using a two-level
scheme especially on large systems in Tables 6-7. On the same geometries
considered in the previous section, we apply FGMRES as outer solver
and GMRES for the inner iteration preconditioned by the Frobenius-norm
minimization method described in Section 4. We show the number of inner and
total outer M-V products and the elapsed time needed to achieve convergence
using a tolerance of 10−3 on eight processors of the Compaq machine. The
comparison with the results reported in Table 3 is fair because GMRES has
exactly the same storage requirements as the combination FGMRES/GMRES.
For the same restart value, the storage requirement for the FGMRES algorithm
is twice as large as for standard GMRES because it requires also to store the
preconditioned vectors of the Krylov basis.

The increase in the number of outer iterations is fairly modest except on the
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Outer solver −→ FGMRES, GMRES?

Do k = 1, 2, . . .
• Matrix-vector product: FMM with high accuracy

• Preconditioning: Inner solver (GMRES, TFQMR, . . .)

Do i = 1, 2, . . . ,MAX INNER ITER

• Matrix-vector product: FMM with low accuracy

• Preconditioning: SPAI

End Do
End Do

Figure 11: Inner-outer solution schemes in the FMM context. Sketch of the
algorithm. Iterations are stopped after a fixed number of step (denoted by
MAX INNER ITER).

largest and difficult aircraft test cases. However, note that the scheme enables
to solve this challenging industrial problem while classical restarted GMRES
does not converge and full GMRES exceeds the memory limits. Similarly, on
the Cetaf discretized with one million points the embedded scheme enables
convergence in 22 outer iterations whereas GMRES(120) does not converge in
2000 iterations. The savings in time is also noticeable, with a gain ranging
from two to four depending on the geometry. On the Cobra test cases, the
embedded solver reduces not only the solution time but also the memory used, as
FGMRES(15)/GMRES(30) is faster than GMRES(120). The gain is especially
visible on the aircraft test example with 213084 unknowns. In that example,
the embedded scheme is about 2 hours faster than standard GMRES; up to 973
basis vectors are to orthogonalize while in the inner-outer scheme only a basis
up to 60, leading to a significant saving in the orthogonalization procedure that
is extremely time consuming. Malas et al. have proposed a modified version of
Algorithm 11 that stops the inner iterates when the residual error is below a
threshold [90]. Their code is reported to solve a square patch problem discretized
using EFIE with approximately 22 million nodes, in 9 outer iterations and less
than 7 hours on a moderate number of processors.
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Cetaf

Size GMRES(120) FGMRES(30,60)
Iter Time Iter Time

86256 1546 1h 44m 17+ 960 55m
134775 1125 1h 55m 15+ 840 1h 19m
264156 1373 4h 46m 17+ 960 2h 22m
531900 1717 14h 8m 19+1080 6h

1056636 - > 1d 22+1260 14h
Aircraft

Size GMRES(120) FGMRES(30,60)
Iter Time Iter Time

94704 1956 3h 13m 27+1560 2h 14m
213084 - 7h 56m 34+1920 5h
591900 - 1d 57m 57+3300 1d 9h 45m

1160124 - > 4d 51+2940 16h 41m(64)

Cobra

Size GMRES(120) FGMRES(30,60)
Iter Time Iter Time

60695 708 29m 24+660 18m
179460 433 48m 20+540 42m

Table 6: Number of matrix-vector products and elapsed time required to
converge on eight processors of the Compaq machine. The tests were run
on eight processors of the Compaq machine, except those marked with (k),
which were run on k processors. The symbol ’-’ means that no convergence was
achieved in 2000 iterations. The values of m and n in the symbol FGMRES(m,n)
refer to the restart of the outer and of the inner solver. For FGMRES we give
the number of inner plus total outer iterations needed to achieve convergence.
The tolerance for the iterative solution was 10−3.
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Cetaf

Size
GMRES(∞) FGMRES(∞,60)

Iter Time Iter Time
86256 656 1h 25m 17+ 960 55m

134775 618 1h 45m 15+ 840 1h 19m
264156 710 9h 17+ 960 2h 22m
531900 844 1d 18m 19+1080 6h

1056636 T.L.E. > 9h(32) 22+1260 14h
Aircraft

Size
GMRES(∞) FGMRES(∞,60)

Iter Time Iter Time
94704 746 2h 9m 23+1320 2h 30m

213084 973 7h 19m 30+1740 6h 11m

591900 1461 16h 42m(64) 43+2520 12h(32)

1160124 M.L.E.(64) > 1d 43+2520 14 h 28m(64)

Cobra

Size GMRES(∞) FGMRES(∞,60)
Iter Time Iter Time

60695 369 26m 21+600 17m
179460 353 1h 11m 18+510 38m

Table 7: Number of matrix-vector products and elapsed time required to
converge on eight processors of the Compaq machine. The tests were run on
eight processors of the Compaq machine, except those marked with (k), that
were run on k processors. The values of m and n in the symbol FGMRES(m,n)
refer to the restart of the outer and of the inner solver. For FGMRES we give
the number of inner plus total outer iterations needed to achieve convergence.
The tolerance for the iterative solution was 10−3. Acronyms: M.L.E. ≡ memory
limits exceeded, T.L.E. ≡ CPU time limits exceeded
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6 Other preconditioners

Multigrid methods are provably optimal algorithms for solving various classes
of partial differential equations. Basically, multigrid-based preconditioners
solve a sequence of problems on a hierarchy of grids of different size.
Geometric multigrids require a hierarchy of nested meshes to setup the principal
components of the algorithm, i.e. a coarsening strategy to decrease the number
of unknowns, grid transfer operators to move from a grid to another one, coarse
grid operators and smoothing procedure, see e.g. [64]. They can show very good
scalability properties on some problems class but are difficult to implement on
unstructured meshes when a hierarchy of grids is not available and it may
be complicate to construct. Attempts to apply these techniques to dense
linear systems have obtained mixed success. Early experiments on boundary
element equations are reported with geometric versions on model problems,
typically the hypersingular and single-layer potential integral operators arising
from the Laplace equation [101, 96, 19]. Algebraic multigrid algorithms use
only single grid information extracted from either the graph or the entries
of the coefficient matrix and are nearly as effective as geometric algorithms
in reducing the number of iterations, see e.g [18, 20, 122, 103]. Langer et al.
propose to apply an auxiliary sparse matrix reflecting the local topology of the
mesh on the fine grid to setup all the components of the multigrid algorithm in
a purely algebraic setting [83]. This gray-box approach is fairly robust on model
problems and maintains the algorithmic and memory complexity of the M-V
product operation [82], thus it is well suited to be combined with MLFMA.
In [26], an additive two-grid cycle is proposed for multiple right-hand side
systems. The algorithm is built on top of a sparse approximate inverse that
is used as smoother, while the grid transfer operators are defined using spectral
information of the preconditioned matrix. More precisely, the coarse space is
defined using a standard Galerkin formula Ac = RAP where the prolongation
operator P is selected to be the set of right eigenvectors associated with the
set of eigenvalues λi of MA with |λi| ≤ ε and the restriction operator R is
selected orthogonal to P . A sketch of the algorithm is presented in Figure 12.
After µ smoothing steps, the residual is projected into the coarse subspace
by means of the operator R and the coarse space error equation involving Ac

is solved exactly. Finally, the error is prolongated back in the original space
using the operator P and the new approximation is smoothed again. These
two contributions are summed together for the solution update. The use of
a damping parameter ω can ensure better clustering of the right part of the
spectrum in this case. Selecting ω = λmax

α , the spectrum of MA is contracted
so that the largest eigenvalue has modulus α. Although in the contraction some
small eigenvalues will approach the origin, with an appropriate choice of α the
right part of the spectrum is likely to cluster more effectively around one. The
two-grid cycle induces a global deflation of eigenvalues in the spectrum of MA.
The preconditioned matrix has eigenvalues ηi defined as

{
ηi = 1 if |λi| ≤ ε,
ηi = 1− (1− ωλi)µ if |λi| > ε.

In Table 8 we show results of one experiment on the Airbus aircraft problem
discretized with 94704 nodes. Although small, this problem is difficult enough
to solve by iterative methods. Convergence of GMRES preconditioned by the
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Frobenius-norm minimization approximate inverse is achieved only with large
values of restart. Using only ten eigenvectors, the two-grid cycle enables to
obtain convergence for very small restart, therefore with very low memory. The
cost of applying the preconditioner is O(n).

1. High frequency correction:
e0
1 = 0

for j=1, µ do

ej
1 = ej−1

1 + ωM(r −AFMMej−1
1 )

end for
c1 = (I − PR)eµ

1

2. Low frequency correction:
c2 = PA−1

c Rr, Ac = RAP

3. Solution update:
z = c1 + c2

Figure 12: Additive two-grid spectral preconditioning. The algorithm.

Airbus aircraft problem (size 94704)
With MSPAI GMRES(10) +4000 iterations

µ GMRES(10) CPU-time
1 1835 1h07m

2 807 36m

3 368 22m

Table 8: Experiments with additive two-grid spectral preconditioning on the
Airbus aircraft problem. For these experiments we use ω = 2

3λmax(MA) in
Algorithm 12

Preconditioners based on wavelet techniques are also receiving considerable
interest. The wavelet compression of integral operators with smooth kernels
yields nearly sparse matrices with at most O(n loga n) nonzero entries, where
a is a small constant that depends on the operator and the wavelet used
[45,13,68,81,71]. The compressed matrix is spectrally equivalent to the original
matrix and preconditioning is often needed, see e.g. [29, 70, 27, 28, 32, 56, 69].
Very efficient algorithms have been proposed by Chen et al. at University
of Liverpool, based on reordering the wavelet basis so to produce matrices
with banded or nearly banded structures that are better suited to design
preconditioners with banded [32] or bordered block structure [56, 70]. Other
approaches are based on multi-level preconditioners [28] and sparse approximate
inverses. The inverse of dense matrices arising from the discretization of
boundary integral equations with smooth Green’s function can be effectively
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compressed in wavelet basis [41, 27, 29]. Denoting by W the level L discrete
wavelet transform and by a ˜ the compressed matrices, we may write

Ã−1 = WT A−1W =
(
WT AW

)−1
= Ã−1

and the approximate inverse M̃ ' Ã−1 may be computed by minimizing∥∥∥ÃM̃ − I
∥∥∥

F
. The inverse of many wavelet matrices have a finger pattern;

however, including such pattern is prohibitively expensive [40] so that Chan
et al. propose to take a block diagonal pattern [29]. Hawkins et al. propose to
compute the approximate inverse directly from A using the relations
∥∥∥ÃM̃ − I

∥∥∥
F

=
∥∥WT AMW − I

∥∥
F

=
∥∥WWT AMW −W

∥∥
F

=
∥∥∥AM̂ −W

∥∥∥
F

,

where we denote by M̃ = WT MW and by M̂ = MW = WM̃ . Since M̃ has
a predictable sparsity pattern, then M̂ has a predictable sparsity pattern that
is similar to the pattern of W [69]. Including all scales interactions, the sparse
approximate inverse and the discrete wavelet transform have linear complexity
in n and can be effectively combined with an operator splitting approach
such as (4). Most experiments with wavelet preconditioners are reported for
model problems, e.g. Calderon-Zygmund type matrix, single and double layer
potentials, the hyper-singular operator. For oscillatory kernels the compressed
matrix may be fairly dense and wavelet techniques are less useful. For Helmholtz
problems, wavelet Galerkin schemes yield matrices with approximately O(kn)
(k is the wavenumber) which becomes O(n2) when the number of unknowns
is related to k. If the number of unknowns is independent of k, the wavelet
Galerkin scheme may have optimal complexity O(n) and therefore wavelet
techniques are more appealing to use [67,44,71].

7 Concluding remarks

Thanks to the use of iterative methods and suitable preconditioners, fast
integral solvers involving tens of million unknowns are nowadays feasible and
can be integrated in the design processes making boundary element techniques
particularly attractive to use in realistic applications. Many undergoing
projects around the world are currently targeting petascale-class computer
systems with hundreds of thousands of CPU cores. The availability of such
large computer resources poses tremendous scientific challenges. It is not
sufficient to port existing codes to novel supercomputer architectures but it
is necessary to identify optimal high-performance numerical algorithms for
better performance. From a linear algebra viewpoint, large-scale simulations
are extremely demanding for scalable preconditioners efficiently combined with
hierarchical techniques like MLFMA. We have reviewed important advances for
the class of incomplete factorizations, sparse approximate inverses and multilevel
algorithms. Further investigation is necessary to identify the best class of
method for the given problem and the selected computer hardware. The use
of more powerful (but also more complex) computing facilities should help in
the search for additional speed, but it will also mean that there will be even
more factors that need to be considered when attempting to identify the optimal
approach in the future.
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