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Abstract

This work focuses on the use of the hypersingular boundary integral equation
to evaluate the linear elastic stress tensor on the boundary. A companion
paper [1] has been devoted to smooth boundaries: in the present work, the
traction equation is analyzed at a corner, in the presence of a Lipschitz
boundary. Properties of the hypersingular and of the strongly singular oper-
ator are discussed together with properties of the whole linear elastic integral
operator.
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1 Introduction

In the first part of this work [1], the hypersingular integral formulation of the linear
elastic problem has been revised in view of its use in evaluating the stress tensor
on a smooth boundary. There, “smooth” stood for every boundary for which a
normal and a tangent vector to the boundary made sense. This second part aims
at analyzing the hypersingular identity

χΩ(x)p(x) + (1)∫

Γp

Gpp(r;n(x); l(y))u(y) dΓy +
∫

Γu

Gpp(r;n(x); l(y))ū(y) dΓy =
∫

Γu

Gpu(r;n(x))p(y) dΓy +
∫

Γp

Gpu(r;n(x))p̄(y) dΓy , x /∈ Γ

and the traction boundary integral equation (BIE),

D(x)p(x) + (2)

=
∫

Γp

Gpp(r;n(x); l(y))u(y) dΓy+ =
∫

Γu

Gpp(r;n(x); l(y))ū(y) dΓy =
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−
∫

Γu

Gpu(r;n(x))p(y) dΓy + −
∫

Γp

Gpu(r;n(x))p̄(y) dΓy , x ∈ Γ

on boundaries that present corners. In dealing with smooth boundaries, p(x)
in equation (2) denotes the traction at x ∈ Γ referring to the outward normal
l(x), that is p(x) stands for p(x, l(x)). Proposition 4.1 in reference [1] states that
equation (2) holds even with respect to any direction n(x). The present work aims
at extending such a result in the presence of corners, when normal at the boundary
is not uniquely defined.

Similarly to [1], the contribution of the hypersingular kernel and of the strongly
singular kernel to the free term D are separately considered. To this aim, the open
domain Ω ∈ R2, and its boundary Γ, formed by a finite number of curve elements,
are treated as follows.

Take x0 ∈ Γ, Iε ⊂ R2 a neighborhood of it, and define Γε =
def

Γ
⋂

Iε (see
figure 1-a). Let ỹ(s) = {ỹ1(s), ỹ2(s)}, 0 ≤ s ≤ l be the parametric equations
of curve Γε with s denoting the curvilinear abscissa; assume ỹ(s) differentiable in
0 ≤ s ≤ l with the exception of a single point s0; at s0 assume that they exist
lims→s+

0
ỹ′(s) and lims→s−0

ỹ′(s). Define Γ−ε ⊂ Γε the curve parameterized by

ỹ(s) = {ỹ1(s), ỹ2(s)}, 0 ≤ s ≤ s0 and Γ+
ε =

def

Γε − Γ−ε its complementary part
described by ỹ(s) = {ỹ1(s), ỹ2(s)}, s0 ≤ s ≤ l. Consider two local orthogonal
coordinate systems L+ and L− centered at x0 = ỹ(s0) ∈ Γε, as in figure 1-
b. Axis y1, y2 are taken as tangent and normal to Γε at x0, respectively, in a
limit sense s → s+

0 and s → s−0 . Point x0 is selected such that the parametric
equations of Γε read y(y+

1 ) = {y+
1 , y+

2 (y+
1 )}, y+

1 ∈ I+
ε =

def

[0, ε] in L+ and y(y−1 ) =
{y−1 , y−2 (y−1 )}, y−1 ∈ I−ε =

def

[−ε, 0] in L−.
Split equation (1) on Γ in Γε and its complementary part. Free terms come out
from integrals

∫

Γε

Gpp(r;n(x); l(y))u(y) dΓy Ω 3 x → x0 ∈ Γε (3)
∫

Γε

Gpu(r;n(x))p(y) dΓy Ω 3 x → x0 ∈ Γε (4)

the singular part of which will be evaluated analytically by imposing suitable
regularity to the solution.

Suppose u ∈ C1,α(Γε), allowing an asymptotic analysis of integral (3), by
expanding u(y) around x0 as follows:

u(y) = u(x0) + JACy(u)|x0
(y − x0) + O

(||y − x0||1+α
)

(5)

for any 0 < α ≤ 1. The Jacobian term is linked to the strain tensor ε by the
decomposition:

JACy(u)|x0
= ε(x0) + SKW(JACy(u)|x0

) (6)
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a) Boundary Γε and b) Local and global references
its complementary part. on Γε

Figure 1: Description of Γε.

By assuming that the skew-symmetric part, which describes only rigid body modes,
vanishes, the integral (3) becomes:

∫

Γε

Gpp( ) [u(y)− u(x0)− ε(x0) (y − x0)] dΓ +

+
∫

Γε

Gpp( ) dΓu(x0) +
∫

Γε

Gpp( ) ε(x0)y dΓ Ω 3 x → x0 ∈ Γε (7)

In view of eq. (5) and of the hyper singularity of the kernel Gpp, the function

Gpp(x− y;n(x); l(y)) [u(y)− u(x0)− ε(x0) (y − x0)]

is Lebesgue integrable on Γε also when x ∈ Ω moves to x0 ∈ Γε. Free terms
arise therefore from the remaining terms, which will be dealt with in Section 2
by means of recently proposed formulae [2]. As a main result, it will be shown
that the presence of a corner causes the non-existence of limit (7): it turns out to
consist of the finite part of Hadamard (HFP), of a bounded term independent on
the size of the support (expected to be the free term contribution Dpp(x,n(x))),
and of an unbounded logarithmic term. This last term is proved to vanish on every
C1 boundary, therefore it is merely due to the presence of the corner. On the other
hand, even the “candidate” to be the free term has a major problem: it shows
to depend on the direction by which the limit is taken, and cannot be defined
by a limit process. It seems in conclusion that the property of convergence of
the hypersingular integral to a HFP plus a free term, proved on smooth domains,
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cannot be extended to corners despite some terms that are present “in nuce”. It
should be questionable, accordingly, if equation (2) may be written at a corner.

Assume p ∈ C0,α(Γε). This allows to expand p(y) around x0 as follows:

p(y) = p(x0) + O (||y − x0||α) (8)

for any 0 < α ≤ 1 and integral (4) becomes:
∫

Γε

Gpu( ) [p(y)− p(x0)] dΓ +
∫

Γε

Gpu( ) dΓp(x0) Ω 3 x → x0 ∈ Γε

In view of eq. (8) and of the strong singularity of kernel Gpu, function

Gpu(x− y;n(x)) [p(y)− p(x0)]

is integrable on Γε also when x ∈ Γε. Free terms arise therefore from the remaining
term, which will be considered in Section 3. The limit behavior of the strongly
singular integral is similar to the hypersingular one, showing Cauchy’s principal
value (CPV), an unbounded logarithmic term, and a bounded factor (which in
nuce is the free term contribution Dpu(x,n(x))) that cannot be defined by a limit
process.

In section 4 it will be proved that a matrix D exists such that equation (2)
holds at a corner. Such a matrix is well defined by a limit process and is a linear
combination of the “candidate” free terms Dpp(x,n(x)) and of Dpu(x,n(x)):

D(x) = I + Dpp(x,n(x))−Dpu(x,n(x)) (9)

The free term coefficient D(x) is proved to depend on the material properties of the
body, on the direction n(x) and on the angle ϕ at the corner point. Furthermore,
it will be proved that the sum of all unbounded logarithmic terms cancels out in
the limit process, so that equation (2) is well defined even at a corner. Such an
integral equation is however due to a property of the global elastic integral and
not of each singular operator. Only in this view equation (2) still makes sense at
a corner.

In order to prove all the statements above, the linear elastic isotropic consti-
tutive law must be complied by all unknown fields. For all fields that do not fulfill
the constitutive law, all aforesaid properties do not seem to hold and equation (2)
does not seem to make sense at a corner.

2 Free terms arising from the hypersingular ker-
nel

This section aims at analyzing the limits
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lim
x→x0

{∫

Γ−ε
Gpp(r;n(x), l(y)) dΓy u(x0) (10)

+
∫

Γ+
ε

Gpp(r;n(x), l(y)) dΓy

}
u(x0)

lim
x→x0

{∫

Γ−ε
Gpp(r;n(x), l(y)) ε(x0)y dΓy (11)

+
∫

Γ+
ε

Gpp(r;n(x), l(y)) ε(x0)y dΓy

}

when x ∈ Ω. In the companion paper [1], the support of integrals (10)-(11) has
been changed to I±ε , in this way introducing approximations of different order
(O(ε) or O(1)) depending on the smoothness of Γ±ε . This idea can be easily
adapted to the case of corners, thus having almost Cn boundaries, in the sense
y±2 (y1) ∈ Cn(I±ε ), n = 1, 2. As a consequence, analysis in sections 2.2 and 2.3
of reference [1] easily extends to corners. Accordingly, such results will not be
repeated here, and reference is made to a corner formed by two straight lines.

Proposition 2.1 For solving integral integrals (10), (11) it is sufficient to solve
the following:

∫ x1+
ε
2

x1− ε
2

Gpp(r;n(x); l(y)) ri
1 dr1 i = 0, 1 x ∈ Ω

Proof: With regard to Γ+
ε and denoting with e1 the unit vector associated to the y1-

axis, in L+ one has �(x0)y = y1 �(x0) e1 + O(y2
1). To evaluate integrals (10), (11) one

therefore deals with the following integrals:

∫ ε

0

Gpp(x− z;n(x); l(z)) yi
1 dy1 i = 0, 1 x ∈ Ω

that can be performed by means of the variable change r = x−z. The thesis follows after
a reference change. Similar considerations lead to prove the thesis on Γ−ε .

4

Corners increase the amount of mathematical passages required by (10)-(11)
with respect to a smooth boundary. Nevertheless, there are basically no new
concepts in analytical integrations and details are collected in Appendix 1. New
concepts come out in the limit process Ω 3 x → x0 ∈ Γε. Defining with

A =
(

cosϕ − sin ϕ
sin ϕ cosϕ

)

the matrix that governs the reference change between L− and L+, the following
propositions hold (proofs in appendix 1):
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Proposition 2.2 For any ε ∈ R:

lim
x→x0

{∫ 0

−ε

G−
pp dy1 + AT

∫ ε

0

G+
pp dy1A

}
==

∫ 0

−ε

G−
pp dy1+AT =

∫ ε

0

G+
pp dy1A (12)

Proposition 2.3 For any ε ∈ R:

lim
x→x0

{∫ x−1 + ε
2

x−1 − ε
2

G−
pp dr1

(
x−1 −

ε

2

)
ε−(x0) e−1 +

AT

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp dr1

(
x+

1 +
ε

2

)
A ε−(x0) ATe+

1

}
= ft0

pp(13)

lim
x→x0

{∫ x−1 + ε
2

x−1 − ε
2

G−
pp r1 dr1ε

−(x0) e−1 + AT

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp r1dr1A ε−(x0) ATe+

1

}
=

=
∫ x−1 + ε

2

x−1 − ε
2

G−
pp r1dr1ε

−(x0) e−1 + AT =
∫ x+

1 + ε
2

x+
1 − ε

2

G+
pp r1dr1A ε−(x0) ATe+

1 +

ft1
pp + l1pp(ϕ,n, ε, G, ν) lim

x→x0
log ‖x− x0‖ (14)

with vectors ft0
pp , ft1

pp , and l1pp defined by comparison with equations (27), (30)
in Appendix 1. Differently from the smooth case, the limit to the boundary (14)
shows an unbounded logarithmic term. It is questionable therefore if equation (2),
formulated in terms of HFP and CPV, still makes sense in the presence of corners.
Indeed, as proved later on in the paper, the logarithmic unbounded term cancels
out with an unbounded counterpart arising from the strongly singular kernel. This
event may give a sense to the equation (2) on merely continuous boundaries, owing
to a property of the global (elastic) problem. The finite part formulation should
therefore be intended for corners as an extension of equation (2) which may be
proved rigorously only for smooth boundaries, because identity (16) in paper [1]
cannot be extended in the presence of corners.

Vectors ft0
pp , ft1

pp are independent on ε and therefore act as a free term. Un-
fortunately they depend on the direction by which x approaches x0 and are not
consistent with the definition of a limit process (see also figure 2). Such a de-
pendency is proved to vanish (see Section 4) with a counterpart arising from the
strongly singular kernel. Only in this way of thinking one may conclude that the
term −ft0

pp− ft1
pp is the extension of the hypersingular free term contribution (13)

in paper [1] in the presence of corners.

3 Free terms arising from the strongly singular
kernel.

Consider the integral (x ∈ Ω)

lim
x→x0

{∫

Γ−ε
Gpu(r;n(x)) dΓp−(x0) +

∫

Γ+
ε

Gpu(r;n(x)) dΓp+(x0)
}

(15)
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Figure 2: Limit process Ω 3 x → x0 ∈ Γ .

As stated in the introduction, p−(x0) stands for p−(x0, l−(x0)); since at x0 nor-
mals to the boundary are not defined, l−(x0) is here intended in a limit sense,
i.e.

l−(x0) =
def

lim
y→x0

l(y) y ∈ Γ−ε

and the same holds for l+(x0).

Proposition 3.1 If
√

1 + y′2(y1)2 = 1 + O(y1) ∀y1 ∈ [−ε, 0 [∪ ] 0, ε]

then for solving integral (15) it is sufficient to solve integrals:

∫ x1+
ε
2

x1− ε
2

Gpu(r;n(x)) dr1 x ∈ Ω

Proof: Denoting with r = ||x− y|| and taking x /∈ Γ+
ε , one writes in L+:

∫

Γ+
ε

f(y)

r
dΓ =

def

∫ l

s0

f(ỹ(s))

r
ds =

∫ ε

0

f(y(y1))

r

√
1 + y′2(y1)2 dy1 (16)

=

∫ ε

0

f(y(y1))

r
dy1 + O(ε)

for any f(y(y1)) ∈ C0(I+
ε ) in view of the adopted hypothesis.

4

The strongly singular kernel shows the same peculiarities (see proposition 2.3)
of the hypersingular kernel with regard to the free term analysis, owing to the
following result, which is proved in appendix 2:
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Proposition 3.2 For any ε ∈ R:

lim
x→x0

{∫ 0

−ε

G−
pu dy1σ

−(x0) e−2 + AT

∫ ε

0

G+
pu dy1A σ−(x0) ATl+

}
=

=
∫ 0

−ε

G−
pu dy1 σ−(x0) e−2 + AT =

∫ ε

0

G+
pudy1Aσ−(x0) ATl+ +

ftpu − l1pu(ϕ,n, σ, G, ν) lim
x→x0

log ‖x− x0‖ (17)

The vector ftpu is defined by comparison with eq. (32) in appendix 2. The
limit (17) is an essential result for the free term analysis: it shows that, in the
presence of corners, the strongly singular integral produces unbounded terms that
do not cancel out in the limit process Ω 3 x → x0 ∈ Γ.

The limit (17) gives Cauchy’s principal value, plus an unbounded logarithmic
term and the vector ftpu, which plays the role of a free term being independent
on ε. Similarly to ftpp, the vector ftpu depends on the selected direction in the
limit process Ω 3 x → x0 ∈ Γ, therefore it cannot be defined as a result of a limit
process for it is not consistent with a definition of limit (see also figure 2).

4 Properties of free terms coefficients

In this section, some properties of the free terms are stated, under the hypothesis
of validity of the linear isotropic elastic constitutive law:

ε = − ν

E
tr (σ) I +

1 + ν

E
σ (18)

The goal is to extend Proposition 4.1 in [1] to the case of corners.

Proposition 4.1 If displacement and stress fields satisfy the constitutive equation
(18), then:

l1pp(ϕ,n, ε(σ), G, ν) = l1pu(ϕ,n, σ, G, ν)

Proof: See appendices 1, 2.

4

As a main consequence of Proposition 4.1, the logarithmic unbounded term of
the hypersingular integral cancel out with an unbounded counterpart arising from
the strongly singular kernel. This event may give sense to the equation (2) on
merely continuous boundaries, owing to a property of the global (elastic) problem.
Though, Proposition 4.1 applies only to displacement and stress fields that satisfy
the constitutive equation (18). Therefore it holds for the exact solution fields u(y),
p(y) but generally not for the approximated fields that pertain to the numerical
solution. Accordingly, an unbounded behavior at corners for the post-processing
stress evaluation at a corner seems to be unavoidable.
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Proposition 4.2 If displacement and stress fields satisfy the constitutive equation
(18), then the sum

ftpu + ft0
pp + ft1

pp

does not depend on the direction θ (see figure 2).

Proof: The thesis is proved by direct substitution, making use of the constitutive law
(18) and of the definitions in Appendices 1, 2:

ftpu = apu + spu , ft0
pp = −a0

pp − s0
pp , ft1

pp = −a1
pp − s1

pp − h1
pp

It comes out:

ftpu + ft0
pp + ft1

pp =
1

16 π (−1 + ν)

{
(19)

8 (ϕ + π) (n1 σ11 + n2 σ21) (−1 + ν) + 6 σ21n1 +

n2 (3 σ22 + σ11 (5− 6 ν)− 6 σ22 ν) +

+ (−4 n1 σ21 + 2 n2 (σ11 + σ22) (−2 + 3 ν)) cos(2 ϕ) +

+2 n1 (−3 σ11 − σ22 + 3 (σ11 + σ22) ν) sin(2 ϕ) +

+ (−2 n1 σ21 + n2 (−σ11 + σ22)) cos(4 ϕ) + (2 n2 σ21 + n1 (−σ11 + σ22)) sin(4 ϕ),

8 (ϕ + π) (n1 σ21 + n2 σ22) (−1 + ν) + 2 n2 σ21 +

n1 (5 σ11 + 3 σ22 − 6 (σ11 + σ22) ν) +

+ (−4 n2 σ21 + 2 n1 (σ11 + σ22) (−2 + 3 ν)) cos(2 ϕ) +

−2 n2 (−σ11 − 3 σ22 + 3 (σ11 + σ22) ν) sin(2 ϕ) +

+ (2 n2 σ21 + n1 (−σ11 + σ22)) cos(4 ϕ) + (2 n1 σ21 + n2 (σ11 − σ22)) sin(4 ϕ)
}

4

Proposition 4.2 implies that all the limit processes behind the terms ftpu, ft0
pp,

and ft1
pp make sense when their sum is considered, and the sum ftpu + ft0

pp + ft1
pp

is the result of such a limit process. The next statement extends Proposition 4.1
in [1] to the case of corners:

Proposition 4.3 Let p(x0) refer to the direction n(x0) and displacement and
stress fields satisfy the constitutive equation (18). Then a matrix D exists such
that equation (2) holds at x0 ∈ Γε.

Proof: Take the local orthogonal systems L+, L− as usual, see figure 1-b, and for
simplicity assume L− to be the absolute coordinate system. Consider x ∈ Ω and the HI
(1):

p(x,n(x)) =

∫

Γ

Gpu(r;n(x))p(y) dΓy −
∫

Γ

Gpp(r;n(x); l(y))u(y) dΓy

=

∫

Γ\Γε

Gpu(r;n(x))p(y) dΓy +

∫

Γ−ε

Gpu( )
[
p(y)− p−(x0)

]
dΓ

+

∫

Γ−ε

Gpu( ) dΓp−(x0) +

∫

Γ+
ε

Gpu( )
[
p(y)− p+(x0)

]
dΓ
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+

∫

Γ+
ε

Gpu( ) dΓp+(x0)−
∫

Γ\Γε

Gpp(r;n(x); l(y))u(y) dΓy

−
∫

Γε

Gpp( ) [u(y)− u(x0)− �(x0) (y − x0)] dΓ

−
∫

Γε

Gpp( ) dΓu(x0)−
∫

Γε

Gpp( ) �(x0)y dΓ

p−(x0) stands for p−(x0, l
−(x0)); since at x0 normals to the boundary are not defined,

l−(x0) is here intended in a limit sense, i.e.

l−(x0) =
def

lim
y→x0

l(y) y ∈ Γ−ε

and the same holds for l+(x0). Take the limit to the boundary Ω 3 x → x0:

p(x0,n(x0)) =∫

Γ\Γε

Gpu(x0 − y;n(x0))p(y) dΓy −
∫

Γ\Γε

Gpp(x0 − y;n(x0); l(y))u(y) dΓy

+ lim
x→x0

{∫

Γ−ε

Gpu(x− y;n(x))
[
p(y)− p−(x0)

]
dΓ

+

∫

Γ+
ε

Gpu(x− y;n(x))
[
p(y)− p+(x0)

]
dΓ

}

+ lim
x→x0

{∫

Γ−ε

Gpu(x− y;n(x)) dΓ

}
p−(x0)

+ lim
x→x0

{∫

Γ+
ε

Gpu(x− y;n(x)) dΓ

}
p+(x0)

− lim
x→x0

{∫

Γε

Gpp(r;n(x); l(y)) [u(y)− u(x0)− �(x0) (y − x0)] dΓ

}

− lim
x→x0

{∫

Γε

Gpp(r;n(x); l(y)) dΓ

}
u(x0)

− lim
x→x0

{∫

Γε

Gpp(r;n(x); l(y)) �(x0)y dΓ

}

Denote with

=

∫

Γ−ε

Gpu(x0 − y;n(x0)) dΓ =
def

=

∫ 0

−ε

G−
pu(x0 − y;n(x0)) dy1

=

∫

Γ+
ε

Gpu(x0 − y;n(x0)) dΓ =
def

AT =

∫ ε

0

G+
pu(x0 − y;n(x0)) dy1A

=

∫

Γε

Gpp(x0 − y;n(x); l(y)) dΓ =
def

=

∫ 0

−ε

G−
pp(x0 − y;n(x); l(y)) dy1 +

AT =

∫ ε

0

G+
pp(x0 − y;n(x); l(y)) dy1A
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=

∫ x−1 + ε
2

x−1 −
ε
2

G−
pp(x0 − y;n(x); l(y)) dr−1 + AT

∫ x+
1 + ε

2

x+
1 −

ε
2

G+
pp(x0 − y;n(x); l(y)) dr+

1 A

=

∫

Γε

Gpp(x0 − y;n(x); l(y)) �(x0)y dΓ =
def

=
def

=

∫ 0

−ε

G−
pp(x0 − y;n(x); l(y)) �−(x0)y

−dy1 +

AT =

∫ ε

0

G+
pp(x0 − y;n(x); l(y))�+(x0)y

+ dy1

==

∫ 0

−ε

G−
pp(x0 − y;n(x); l(y)) y−1 dy1�−(x0) e

−
1 +

AT =

∫ ε

0

G+
pp(x0 − y;n(x); l(y))y+

1 dy1�+(x0) e
+
1

= − =

∫ x−1 + ε
2

x−1 −
ε
2

G−
pp() r−1 dr1�−(x0) e

−
1 −AT =

∫ x+
1 + ε

2

x+
1 −

ε
2

G+
pp() r+

1 dr1A �−(x0)A
T e+

1

From equations (17), (12), two terms in the limit above simplify as follows:

lim
x→x0

{∫

Γ−ε

Gpu(x− y;n(x)) dΓ

}
p−(x0) + lim

x→x0

{∫

Γ+
ε

Gpu(x− y;n(x)) dΓ

}
p+(x0) =

=

∫

Γ−ε

Gpu(x0 − y;n(x0)) dΓp−(x0)+ =

∫

Γ+
ε

Gpu(x0 − y;n(x0)) dΓp+(x0) +

+ ftpu − l1pp(ϕ,n, �(�), G, ν) lim
x→x0

log ‖x− x0‖

lim
x→x0

{∫

Γε

Gpp(r;n(x); l(y)) dΓ

}
u(x0) ==

∫

Γε

Gpp(x0 − y;n(x); l(y)) dΓu(x0)

Furthermore, making use of equations (26), (14)

lim
x→x0

{∫

Γε

Gpp(r;n(x); l(y)) �(x0)y dΓ

}
=

= lim
x→x0

{∫ 0

−ε

G−
pp(r;n(x); l(y)) y−1 dy1�−(x0) e

−
1 +

AT

∫ ε

0

G+
pp(r;n(x); l(y)) y+

1 dy1�+(x0) e
+
1

}

= lim
x→x0

{(∫ x−1 + ε
2

x−1 −
ε
2

G−
pp(r;n(x); l(y)) dr−1

(
x−1 −

ε

2

)

−
∫ x−1 + ε

2

x−1 −
ε
2

G−
pp(r;n(x); l(y)) r−1 dr−1

)
�−(x0) e

−
1 +

AT

(∫ x+
1 + ε

2

x+
1 −

ε
2

G+
pp(r;n(x); l(y)) dr+

1

(
x+

1 +
ε

2

)
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−
∫ x+

1 + ε
2

x+
1 −

ε
2

G+
pp(r;n(x); l(y)) r+

1 dr+
1

)
�+(x0) e

+
1

}

=
(26),(14) −ft0

pp+ =

∫

Γε

Gpp(x0 − y;n(x); l(y)) �(x0)y dΓ− ft1
pp

−l1pp(ϕ,n, �, G, ν) lim
x→x0

log ‖x− x0‖

By substituting all partial results above, it is straightforward to get:

p(x0,n(x0)) =∫

Γ\Γε

Gpu(x0 − y;n(x0))p(y) dΓy −
∫

Γ\Γε

Gpp(x0 − y;n(x0); l(y))u(y) dΓy

+ lim
x→x0

{∫

Γ−ε

Gpu(x− y;n(x))
[
p(y)− p−(x0)

]
dΓ

+

∫

Γ+
ε

Gpu(x− y;n(x))
[
p(y)− p+(x0)

]
dΓ

}

+ =

∫

Γ−ε

Gpu(x0 − y;n(x0)) dΓp−(x0)+ =

∫

Γ+
ε

Gpu(x0 − y;n(x0)) dΓp+(x0) + ftpu

− lim
x→x0

{∫

Γε

Gpp(r;n(x); l(y)) [u(y)− u(x0)− �(x0) (y − x0)] dΓ

}

− =

∫

Γε

Gpp(x0 − y;n(x); l(y)) dΓu(x0)− =

∫

Γε

Gpp(x0 − y;n(x); l(y)) �(x0)y dΓ

+ ft0
pp + ft1

pp (20)

Defining with:

Dpp(x0,n(x0)) =
def − (ft0

pp + ft1
pp)⊗ p(x0,n(x0))

‖p(x0,n(x0))‖2 (21)

Dpu(x0,n(x0)) =
def ftpu ⊗ p(x0,n(x0))

‖p(x0,n(x0))‖2 (22)

the thesis is proved by means of eq. (9) and of Proposition 4.2.

4

Remarks to proposition 4.3

• Equation (20) extends the traction equation (2) on non-smooth boundaries.
In fact, it is well known (see e.g. [3] page 18) that on smooth boundaries:

−
∫

Γε

Gpu(r;n(x))p(y) dΓy =

=
∫

Γ−ε
Gpu(r;n(x))p(y) dΓy+ =

∫

Γ+
ε

Gpu(r;n(x))p(y) dΓy
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therefore eq. (20) coincides with eq. (2) on smooth boundaries.

It is worth noting in the proof that the logarithmic unbounded term due to
the limit to the boundary (14) cancels out with the unbounded counterpart
arising from the strongly singular kernel (17). This event gives sense to
the equation (20) on non-smooth boundaries, owing to a property of the
global (elastic) problem. The finite part formulation (20) should therefore
be intended to corners as an extension of equation (2) which may be proved
only for smooth boundaries.

• The free term coefficient D(x) now holds:

D(x) = I− (ftpu + ft0
pp + ft1

pp)⊗ p(x0,n(x0))
‖p(x0,n(x0))‖2

and it is perfectly defined, in view of Proposition 4.2, as a result of a limit
process. It holds obviously

D(x)p(x,n(x)) = p(x,n(x))− (ftpu + ft0
pp + ft1

pp)

with ftpu + ft0
pp + ft1

pp defined by equation (19); by direct substitution, one
proves the following corollary:

Proposition 4.4 If ϕ = 0 then D(x)p(x,n(x)) = 1
2p(x,n(x))

• In view of the previous remark, D(x) depends on angle ϕ, which is expected,
and of the material properties of the body due to the constitutive law (18).
The dependence on the elastic constants does not seem to be avoidable, to
make use of equation (18) it is necessary to define the existence of limit
(19). Similar considerations hold for the dependence on σ and on n(x), in
view of the previous remark. At any rate, further investigations are required
in order to establish further properties which may be hidden by the formal
complexity of (19).

The following proposition seems to be of interest, especially for its numerical im-
plications:

Proposition 4.5 If displacement and stress fields satisfy the constitutive equation
(18), then it holds:

=
∫

Γ−ε
Gpu(x0 − y;n(x0)) dΓp−(x0)+ =

∫

Γ+
ε

Gpu(x0 − y;n(x0)) dΓp+(x0)

− =
∫

Γε

Gpp(x0 − y;n(x); l(y)) ε(x0)y dΓ = 0 (23)
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Proof: It was shown in proposition 4.3 that:

− =

∫

Γε

Gpp(x0 − y;n(x); l(y)) �(x0)y dΓ =

==

∫ x−1 + ε
2

x−1 −
ε
2

G−
pp() r−1 dr1�−(x0) e

−
1 + AT =

∫ x+
1 + ε

2

x+
1 −

ε
2

G+
pp() r+

1 dr1A �−(x0)A
T e+

1

=(28)
G

4π(1− ν)

[
AT

(
n+

2 n+
1

n+
1 n+

2

)
A �−(x0) ATe+

1 −
(

n−2 n−1
n−1 n−2

)
�−(x0) e

−
1

]
log ‖ε‖

= l2pp(ϕ,n, �, G, ν) log ||ε||
where equation (28) has been used. On the other hand,

=

∫

Γ−ε

Gpu(x0 − y;n(x0)) dΓp−(x0)+ =

∫

Γ+
ε

Gpu(x0 − y;n(x0)) dΓp+(x0) =

=

∫ 0

−ε

G−
pu dy1�−(x0) e

−
2 + AT =

∫ ε

0

G+
pu dy1A �−(x0) ATl+ =

1

4π(1− ν)

[(
n−1 (−3 + 2ν) n−2 (−1 + 2ν)
n−2 (1− 2ν) n−1 (−1 + 2ν)

)
�−(x0) e

−
2 +

−AT

(
n+

1 (−3 + 2ν) n+
2 (−1 + 2ν)

n+
2 (1− 2ν) n+

1 (−1 + 2ν)

)
A�−(x0) ATl+

]
log ‖ε‖

= lpu(ϕ,n,�, ν) log ‖ε‖
It holds however:

lpu(ϕ,n,�, ν) = −l2pp(ϕ,n, �, G, ν) =
1

16 π (−1 + v){
sin(ϕ)

(
(2 n2 σ21 + n1 (σ22 + 4 σ22 ν + σ11 (−5 + 4 ν))) cos(ϕ) +

(2 n2 σ21 + n1 (−σ11 + σ22)) cos(3 ϕ) +

2 (4 n1 σ21 − 2 n2 (σ11 (−1 + ν) + σ22 ν)+

(2 n1 σ21 + n2 (σ11 − σ22)) cos(2 ϕ)) sin(ϕ)
)
,

sin(ϕ)
(

(2 n1 σ21 + n2 (σ11 + 3 σ22 − 4 σ11 ν − 4 σ22 ν)) cos(ϕ) +

(2 n1 σ21 + n2 (σ11 − σ22)) cos(3 ϕ)−
2 (2 n1 (σ11 (−1 + ν) + σ22 ν)+

(2 n2 σ21 + n1 (−σ11 + σ22)) cos(2 ϕ)) sin(ϕ)
)}

and the thesis follows.

4

Remarks to proposition 4.5
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• Of course proposition 4.5 applies to smooth boundaries: in that case however
it is trivial, for being

−
∫

Γε

Gpu(x0 − y;n(x0)) dΓp−(x0) =

=
∫

Γε

Gpp(x0 − y;n(x); l(y)) ε(x0)y dΓ = 0

• The evaluation of equation (2) is not a trivial task, because of the involved
singularities, especially for the hypersingular kernel. Several techniques, col-
lectable in three principal groups, have been proposed for their evaluation:
(i) regularization techniques, (ii) numerical integrations, (iii) analytical in-
tegrations.

Numerical methods for the evaluation of the CPV were proposed first in [4].
There is nowadays extensive literature on this subject (see, among others,
[5]-[6]). A huge amount of literature concerns the numerical evaluation of hy-
persingular integrals: among others, [7]-[8]. In almost all numerical schemes,
the evaluation of the terms of identity (23) is the major time-consuming task.
For this reason, schemes that may take into account of identity (23) seem to
be of interest in the framework of the hypersingular BEM.

• Identity (23), as well as all results that have been obtained by making use of
the constitutive law (18), holds for the exact solution fields u(y), p(y) but
generally not for the approximated fields that pertain to the numerical solu-
tion. One must take this problem into account, as well as the unboundedness
due to Proposition 4.1, in every post-processing task.

5 A numerical benchmark.

In this section, numerical results on the stress tensor evaluation are presented, to
confirm the previous analysis. Consider the square domain of figure 3, with sides
of length 2. Two different load sets are considered. In the spirit of an inverse
method, a radial displacement field u(x) = (x1, x2) is firstly considered as the
solution of a (plane strain) elastic problem; the corresponding plane components
of the stress tensor are σ(x) = E/((1 + ν)(1 − 2ν))I. The lower horizontal side
is constrained, whereas the remaining sides are loaded with a normal traction of
intensity p = E/((1 + ν)(1− 2ν)).

In the second load set, the lower horizontal side is constrained by ū(y) = 0. The
upper horizontal side is subjected to the vertical load p̄(y) = (1 + 0.02 x2)(λ +
2G) e2, while the two vertical sides are loaded by p̄(y) = (1 + 0.02 x2)λ l(y),
denoting with λ and G the Lamè constants and by l(y) the outward normal. The
analytical solution of the problem reads:

u(y) = x2(1 + 0.01 x2) e2

A. Salvadori / Electronic Journal of Boundary Elements, Vol. 6, No. 2, pp. 55-84 (2008)

69



Figure 3: Geometry and discretization by means of 16 equal linear boundary ele-
ments.

σ(y) = (1 + 0.02 x2)




λ 0 0
0 λ + 2G 0
0 0 λ




Having approximated the problem via the SGBEM as well as via the collocation
method, owing to the discretization of figure 3 making use of linear boundary
elements, the stress tensor has been evaluated at a sequence of points xn → x∞ as
a post processing task and numerical comparisons in terms of accuracy are plot.

With regard to the first load set, the linear approximation coincides with the
exact solution: accordingly, no numerical errors are expected as the point xn ∈ Ω
moves to the point x∞ ∈ Γ. This is confirmed by the stress tensor analysis on
the set xn = {1− 0.1n, 0.5}: in fact, for being x∞ = {1, 0.5} inside a boundary
element, proposition 2.2 of the companion paper [1] apply. On the contrary, by
considering the set xn = {((1− 0.1n), 2(1− 0.1n))} converging at a corner, numer-
ical errors come into play, as shown in figure 4. Such an error, which shows a linear
behavior, is due to the numerical cancellation. In fact, because the linear approxi-
mation coincides with the exact solution, proposition 4.1 holds, but the computer
code shows to be not robust enough to take into account of the cancellation of
logarithmic terms of equations (14)-(17).

Considering the second load set, the linear numerical solution does not comply
with the quadratic nature of the displacement field and approximations are there-
fore introduced. Assuming the set xn = {((1− 0.1n), 2(1− 0.1n))} converging at
a corner, numerical errors come again into play, as shown in figure 4, but they have
a very different nature and behavior. They are in fact due to the non applicability
of proposition 4.1, because the approximated stress and displacement field do not
satisfy the constitutive law (18). As a consequence,

l1pp(ϕ,n, ε(σ), G, ν) 6= l1pu(ϕ,n, σ, G, ν)
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a) b)

Figure 4: Error at a corner: a) first load set, b) second load set

and a logarithmic unbounded term is expected in the limit process xn → x∞.
Figure 4 shows this error, which takes the form:

σ11(xn+1)− σ11(xn+1) ∼ 2930

on the set xn = {((1− 0.1n), 2(1− 0.1n))} n = 1, 2, ..., 12. The computer code
shows to be not robust enough to increase further the value of n, however the
numerical analysis is in perfect agreement with the theory in previous section,
thus confirming that if the approximated stress and displacement field do not
satisfy the constitutive law (18) the stress tensor evaluation at a corner is not
feasible.

6 Concluding remarks.

In the present work the hypersingular formulation for boundary stress evaluation
has been revised along boundaries that present a corner.

When the boundary is smooth, it is possible to distinguish and determine the
hypersingular and the strongly singular kernels free term contributions, as was
done in the companion paper [1]. In the presence of corners, on the contrary,
the limit to the boundary of each (hyper)singular integral is not bounded and a
logarithmic unbounded term comes into play. Only by neglecting such a term, is
it possible to recognize “candidate” factors which act as free terms; unfortunately
such terms cannot be defined by a limit process, for they depend on the direction
by which the limit process itself is taken.

In conclusion, it is questionable if the hypersingular finite part formulation for
boundary stress evaluation (2) makes sense, as the limit process of the integral of
each singular kernel neither produces Hadamard’s finite parts nor Cauchy’s prin-
cipal values. However, the intimate relationship between hypersingular boundary
integral equations, Hadamard’s finite part, and Cauchy’s principal value is again
confirmed even in the presence of corners. In fact, it has been proved that not
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only the unbounded terms cancel out in the sum of hypersingular and strongly
singular contributions, but the sum of the free term candidates is perfectly defined
by a limit process. Accordingly, the finite part formulation for boundary stress
evaluation makes sense by a global property of the elastic operator and not by
a property of each kernel. Such a conclusion was conjectured by various authors
but, to the best of my knowledge, it was never proved so far.

To emphasize that equation (2) is justified only for the global problem, it has
been proved to apply only to fields that comply with the constitutive law (18).
For all fields that do not fulfill the constitutive law, equation (2) may not hold.
For instance, equation (2) leads to the boundary element method by considering
discrete approximation for displacement and traction fields: for the discrete trac-
tion equation on the boundary, it has been proved that the free term coefficient
on smooth boundaries does not hold 1

2I (see [1]) and that the free term coefficient
is no longer defined in the presence of corners.

As a complementary result in the present work, it was shown that Hadamard’s
finite parts (with respect to the linear terms) and Cauchy’s principal values cancel
themselves out (see Proposition 4.5). Because the computational cost of their eval-
uation is high, such a property may be of interest for the numerical implementation
of the BEM.

As a major drawback of the proposed methodology, analytical integrations
reveal to be formally very complex. As a consequence, their manipulation is not
straightforward and can be done in practice only with the help of a system by doing
mathematics by computer. In this way, it is not always easy to figure out whether
(unexpected) results are due to the computer code representation or wether they
are due to the real nature of the solution (see e.g. the dependence of the free term
coefficient on the material properties of the body).

The present work is preliminary to the analysis of engineering problems, for
which the stress tensor along the boundary is a fundamental item. In particu-
lar, problems of fracture initiation, propagation and bifurcation in soil-structure
interactions [9], in composite [10] and biological materials and tissues are under
investigation [11].
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Appendix 1 - Hypersingular kernel integration at
a corner.

This appendix focuses on the mathematical passages required by the free term
analysis of the hypersingular integrals (10) and (11). By assuming x ∈ Ω consider
the two integrals:

∫ 0

−ε

G−
pp dy1 u−(x0) +

∫ 0

−ε

G−
pp y1 dy1

(
ε−(x0) e−1 + κ−u−(x0)

)
in L−(24)

∫ ε

0

G+
pp dy1 u+(x0) +

∫ ε

0

G+
pp y1 dy1

(
ε+(x0) e+

1 + κ+u+(x0)
)

in L+(25)
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Figure 5: Local reference for analytical integration.

where e+
1 denotes, see figure 5, the unit vector associated to the y+

1 -axis. In order
to sum all contributions, the same coordinate system must be set. With reference
to figure 5 the matrix

A =
(

cosϕ − sin ϕ
sin ϕ cosϕ

)

governs the reference change between L− and L+: accordingly X− = AT X+ A
for any tensor X+ in the local reference L+ and x− = AT x+ for any vector x+ in
the local reference L+. For being

p− = ATp+ ∼ ATG+
pp u+(x0) = ATG+

ppAATu+(x0) = ATG+
ppAu−(x0)

p− = ATp+ ∼ ATG+
pp ε+(x0) e+

1 = ATG+
ppAATε+(x0)AATe+

1

= ATG+
ppA ε−(x0)ATe+

1

it comes out that the sum of integrals (24) and (25) holds:
[∫ 0

−ε

G−
pp (1 + κ− y1) dy1 + AT

∫ ε

0

G+
pp (1 + κ+ y1) dy1A

]
u−(x0) +

∫ 0

−ε

G−
pp y1 dy1ε

−(x0) e−1 + AT

∫ ε

0

G+
pp y1dy1A ε−(x0) ATe+

1

in reference L−.

1.1 Constant term analysis

With reference to figure 5 and x ∈ Ω, the integral
∫ ε

0

G+
pp dy+

1 =
∫ ε

2

− ε
2

G+
pp dy+

1 =
∫ x+

1 + ε
2

x+
1 − ε

2

G+
pp dr+

1 =
1
r2

+S(0)
pp +

1
r4

+H(0)
pp

∣∣∣∣
r+
1 =x+

1 + ε
2

r+
1 =x+

1 − ε
2

has been solved in [2] by means of the variable change r+ = x+ − y+; matrices
S(0)

pp , H(0)
pp follow in the local reference L+:

+S(0)
pp = − G

2π(1− ν)

(
n+

2 r+
1 − 3 n+

1 r+
2 n+

1 r+
1 + n+

2 r+
2

n+
1 r+

1 + n+
2 r+

2 n+
2 r+

1 + n+
1 r+

2

)
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+H(0)
pp = − G (r+

2 )2

π(1− ν)

(−n+
2 r+

1 + n+
1 r+

2 −n+
1 r+

1 − n+
2 r+

2

−n+
1 r+

1 − n+
2 r+

2 n+
2 r+

1 − n+
1 r+

2

)

A similar result holds for the integral

∫ 0

−ε

G−
pp dy−1 =

∫ ε
2

− ε
2

G−
pp dy−1 =

∫ x−1 + ε
2

x−1 − ε
2

G−
pp dr−1 =

1
r2

−S(0)
pp +

1
r4

−H(0)
pp

∣∣∣∣
r+
1 =x+

1 + ε
2

r+
1 =x+

1 − ε
2

The limit to the boundary Ω 3 x → x0 ∈ Γ is taken by means of the norm
||x− x0|| → 0 and of a direction, selected through the angle θ as in figure 6. It is

Figure 6: Limit process Ω 3 x → x0 ∈ Γ .

worth noting that the limit

lim
x→x0

∫ ε

0

G+
pp dy+

1 ==
∫ ε

0

G+
pp dy+

1 + A
G

2 π (1− ν)
W(θ) AT 1

||x− x0|| (26)

with:

W(θ) =
def

( n2 (cos(θ)+cos(3 θ))−n1 (3 sin(θ)+sin(3 θ))
2 cos(2 θ) (n1 cos(θ) + n2 sin(θ))

cos(2 θ) (n1 cos(θ) + n2 sin(θ)) 3 n2 (cos(θ)− cos(3 θ))+n1 (− sin(θ)+sin(3 θ))
2

)

is not well defined. The “inconsistent” terms however cancel out in the sum, so
that

lim
x→x0

[∫ 0

−ε

G−
pp dy1 + AT

∫ ε

0

G+
pp dy1A

]
==

∫ 0

−ε

G−
pp dy1 + AT =

∫ ε

0

G+
pp dy1A

As a consequence, no free terms arise from the constant hypersingular integral.
Furthermore, even in the presence of a corner, the HFP is the outcome of a limit
process for the hypersingular kernel applied to a constant term.

1.2 Linear term analysis

By means of the variable change r = x−y, it is straightforward to split the linear
hypersingular integral in a constant and a linear part with respect to the variable
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r1: ∫ ε

0

G+
pp y+

1 dy+
1 =

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp dr+

1 (x+
1 +

ε

2
)−

∫ x+
1 + ε

2

x+
1 − ε

2

G+
ppr

+
1 dr+

1

The free term analysis for the constant part being already performed, denote by:

lim
x→x0





[
S(0)

pp

r2

]x−1 + ε
2

x−1 − ε
2

(x−1 −
ε

2
) ε−(x0) e−1

+

[
AT S(0)

pp A
r2

]x+
1 (x−)+ ε

2

x+
1 (x−)− ε

2

(x+
1 +

ε

2
) ε−(x0) ATe+

1

}
= −s0

pp(θ, ϕ,n, ε, G, ν)

lim
x→x0





[
H(0)

pp

r4

]x−1 + ε
2

x−1 − ε
2

(x−1 −
ε

2
) ε−(x0) e−1

+

[
AT H(0)

pp A
r4

]x+
1 (x−)+ ε

2

x+
1 (x−)− ε

2

(x+
1 +

ε

2
) ε−(x0) ATe+

1

}
= −h0

pp(θ, ϕ,n, ε, G, ν)

where ϕ is the angle between the normals l+ and l− as in figure 6, n is the selected
direction, G and ν are elastic properties of the body. 1 Functions s0

pp and h0
pp,

being independent on ε, act as free terms. It is worth noting that both vanish at
ϕ = 0, as expected from the free term analysis on smooth boundaries.

By comparison with equation (26), it is straightforward to get

lim
x→x0

{∫ x−1 + ε
2

x−1 − ε
2

G−
pp dr1

(
x−1 −

ε

2

)
ε−(x0) e−1 +

AT

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp dr1

(
x+

1 +
ε

2

)
A ε−(x0) ATe+

1

}
=

=
G

2 π (1− ν)
W(θ) ε−(x0) lim

x→x0

{
−

(
x−1 − ε

2

)

||x− x0|| e
−
1 +

(
x+

1 + ε
2

)

||x− x0|| A
T e+

1

}

= −s0
pp − h0

pp (27)

With regard to the linear part, in [2] it has been proved that when x ∈ Ω:

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp r+

1 dr+
1 = log ‖r+‖L(1)

pp + arctan
(

r+
1

x+
2

)
A(1)

pp +
1
r2

S(1)
pp +

1
r4

H(1)
pp

∣∣∣∣
r+
1 =x+

1 + ε
2

r+
1 =x+

1 − ε
2

where L(1)
pp , A(1)

pp ,S(1)
pp , H(1)

pp are the following matrices in the local reference L+:

L(1)
pp =

G

2π(1− ν)

(
n+

2 n+
1

n+
1 n+

2

)
A(1)

pp = − G

π(1− ν)

(
n1 0
0 0

)

1Note that the limits above do not exist, for they depend on the direction θ by which x → x0

(see figure 6); accordingly s0pp, h0
pp are but notations, not definitions.
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S(1)
pp = − Gr+

2

π(1− ν)

(−2(n+
1 r+

1 + n+
2 r+

2 ) n+
2 r+

1 − 2 n+
1 r+

2

n+
2 r+

1 − 2 n+
1 r+

2 n+
1 r+

1 + n+
2 r+

2

)

H(1)
pp = − G (r+

2 )3

π(1− ν)

(
n+

1 r+
1 + n+

2 r+
2 n+

1 r+
2 − n+

2 r+
1

n+
1 r+

2 − n+
2 r+

1 n+
1 r+

1 + n+
2 r+

2

)

One has therefore
∫ x−1 + ε

2

x−1 − ε
2

G−
pp r−1 dr−1 ε−(x0) e−1 + AT

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp r+

1 dr+
1 A ε−(x0) ATe+

1 =

[
log ‖r−‖L(1)

pp + arctan
(

r−1
x−2

)
A(1)

pp +
1
r2

S(1)
pp +

1
r4

H(1)
pp

]r−1 =x−1 + ε
2

r−1 =x−1 − ε
2

ε−(x0) e−1 +

[
log ‖r+‖AT L(1)

pp A + arctan
(

r+
1

x+
2 (x−)

)
AT A(1)

pp A+

1
r2

AT S(1)
pp A +

1
r4

AT H(1)
pp A

]r+
1 =x+

1 (x−)+ ε
2

r+
1 =x+

1 (x−)− ε
2

ε−(x0) ATe+
1

The limit to the boundary Ω 3 x → x0 ∈ Γ is taken by means of the norm
||x − x0|| → 0 and of a direction, selected through the angle θ as in figure 6.
Denote by:

lim
x→x0





[
S(1)

pp

r2

]x−1 + ε
2

x−1 − ε
2

ε−(x0) e−1 +

[
AT S(1)

pp A
r2

]x+
1 (x−)+ ε

2

x+
1 (x−)− ε

2

ε−(x0) ATe+
1





= s1
pp(θ, ϕ,n, ε, G, ν)

lim
x→x0





[
H(1)

pp

r4

]x−1 + ε
2

x−1 − ε
2

ε−(x0) e−1 +

[
AT H(1)

pp A
r4

]x+
1 (x−)+ ε

2

x+
1 (x−)− ε

2

ε−(x0) ATe+
1





= h1
pp(θ, ϕ,n, ε, G, ν)

lim
x→x0





[
arctan

(
r+
1

x+
2 (x−)

)
AT A(1)

pp A
]x+

1 (x−)+ ε
2

x+
1 (x−)− ε

2

ε−(x0) ATe+
1 +

[
arctan

(
r−1
x−2

)
A(1)

pp

]x−1 + ε
2

x−1 − ε
2

ε−(x0) e−1





= a1
pp(θ, ϕ,n, ε, G, ν)

where ϕ is the angle between the normals l+ and l− as in figure 6, n is the selected
direction, G and ν are elastic properties of the body. 2

2Note that the limits above do not exist, for they depend on the direction θ by which x → x0

(see figure 6); accordingly s1pp, h1
pp, a1

pp are but notations, not definitions.
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Functions s1
pp, h1

pp, and a1
pp, being independent on ε, act as free terms. It is

worth noting that both s1
pp and h1

pp vanish at ϕ = 0, as expected from the free
term analysis on smooth boundaries. Further, at ϕ = 0 it holds e+

1 ≡ e−1 and

a1
pp(θ, ϕ,n, ε, G, ν) =

G

1− ν

(
n1 0
0 0

)
ε(x0) e1

thus confirming the result of equation (13) of reference [1]. Finally, it holds:

lim
x→x0

{[
log ‖r−‖L(1)

pp

]x−1 + ε
2

x−1 − ε
2

ε−(x0) e−1 +

[
AT L(1)

pp A log ‖r+‖
]x+

1 (x−)+ ε
2

x+
1 (x−)− ε

2

ε−(x0) ATe+
1

}

= l2pp(ϕ,n, ε, G, ν) log ‖ε‖+ l1pp(ϕ,n, ε, G, ν) lim
x→x0

log ‖x− x0‖

with l1pp, l2pp vanishing at ϕ = 0. Note also that l1pp, l2pp do not depend on θ. By
introducing Hadamard’s finite part, it is possible to show that

=
∫ x−1 + ε

2

x−1 − ε
2

G−
pp r1dr1ε

−(x0) e−1 + AT =
∫ x+

1 + ε
2

x+
1 − ε

2

G+
pp r1 dr1A ε−(x0) ATe+

1 = (28)

=
G

4π(1− ν)

[
AT

(
n+

2 n+
1

n+
1 n+

2

)
A ε−(x0) ATe+

1 −
(

n−2 n−1
n−1 n−2

)
ε−(x0) e−1

]
log ‖ε‖

= l2pp(ϕ,n, ε, G, ν) log ||ε||
Accordingly,

lim
x→x0

{∫ x−1 + ε
2

x−1 − ε
2

G−
pp r1 dr1ε

−(x0) e−1 + AT

∫ x+
1 + ε

2

x+
1 − ε

2

G+
pp r1dr1A ε−(x0) ATe+

1

}
=

s1
pp + h1

pp + a1
pp+ =

∫ x−1 + ε
2

x−1 − ε
2

G−
pp r1dr1 + (29)

AT =
∫ x+

1 + ε
2

x+
1 − ε

2

G+
pp r1dr1A + l1pp(ϕ,n, ε, G, ν) lim

x→x0
log ‖x− x0‖ (30)

The carried out analysis permits to conclude that, differently from the constant
integral item, the unbounded terms do not cancel out in the limit process Ω 3 x →
x0 ∈ Γ. Identity (30) shows that the limit

lim
x→x0

∫

Γε

Gpp(x− y;n(x); l(y))u(y) dy1

is not bounded in the presence of corners and is equivalent to the HFP plus an
unbounded logarithmic term. Furthermore the term:

Dpp(x0,n(x0)) =
def −(s1

pp + h1
pp + app)1 (31)
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which is expected to be the contribution of the hypersingular kernel to the free-
term D(x) in equation (2), is not well defined in the presence of corners. In fact,
it depends on θ (i.e. the selected direction in the limit process).

Concluding, in the presence of corners two major differences with respect to the
smooth boundary case arise. First, the boundary limit of the hypersingular kernel
is not bounded. Further, its finite contribution (HFP plus free terms) depends on
θ. It will be proved later on in the paper that these two undesirable items cancel
out in the sum with the strongly singular kernel boundary limit. In this sense,
and only in this sense, the quantity (31) may be invoked as the contribution of the
hypersingular kernel to the free term and the concept of HFP invoked.

All aforesaid evaluations have been made with the help of the computer code
MATHEMATICA, release 4.0, because of the high complexity of the involved
terms. In view of its interest, the sum s1

pp + h1
pp + a1

pp is here extensively written
after having expressed ε−(x0) in terms of σ−(x0) by means of equation (18):

s1
pp + h1

pp + a1
pp =

| sin(θ)| csc(θ)
16 π (−1 + ν) sgn(csc(ϕ + θ))

{

2 π cos(ϕ) (n1 cos(ϕ)− n2 sin(ϕ))
[(σ11 + σ22) (−1 + 2 ν) + (−σ11 + σ22) cos(2 ϕ) + 2σ21 sin(2ϕ)] +

sgn(csc(ϕ + θ) sin(θ))[
4 n1 π (σ11 (−1 + ν) + σ22 ν) + 8n1 (σ11 (−1 + ν) + σ22 ν) arctan(cot(θ)) +

4 arctan(cot(ϕ + θ)) cos(ϕ) (n1 cos(ϕ)− n2 sin(ϕ))
[σ11 + σ22 − 2 (σ11 + σ22) ν + (σ11 − σ22) cos(2 ϕ)− 2 σ21 sin(2 ϕ)] +

sin(ϕ)((
− 4 n1 σ11 + 8 n2 σ21 + 4 n1 σ22

)
cos(3 ϕ) +

(
13 n2 σ11 + 20 n1 σ21 − 3 n2 σ22 − 10 n2 σ11 ν −
10 n2 σ22 ν + 8 n2 σ11 cos(2 ϕ) +
+16 n1 σ21 cos(2 ϕ)− 8 n2 σ22 cos(2 ϕ)−
4 (n1 σ21 + n2 (σ11 − σ22)) cos(2 θ) +
−2 (2 n2 σ21 + n1 (−3 σ11 + σ22 + 2 (σ11 + σ22) ν)) sin(2 θ) +

+ (σ11 + σ22) (−1 + 2 ν) (n2 cos(4 θ)− n1 sin(4 θ))
)

sin(ϕ) +
(
8 n2 σ21 + n1 (−11 σ11 + σ22 + 10 (σ11 + σ22) ν)−
4 (2 n2 σ21 + n1 (σ22 − (σ11 + σ22) ν)) cos(2 θ) +
(σ11 + σ22) (−1 + 2 ν) (n1 cos(4 θ) + n2 sin(4 θ)) +

2 (n2 σ11 + 4 n1 σ21 − n2 σ22) sin(2 θ)
)

cos(ϕ)
)]

,
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2 π sin(ϕ) (n2 sin(ϕ)− n1 cos(ϕ))
[(σ11 + σ22) (−1 + 2 ν) + (−σ11 + σ22) cos(2 ϕ) + 2σ21 sin(2ϕ)]−

sgn(csc(ϕ + θ) sin(θ)) sin(ϕ)[
− 4 (2 n1 σ21 + n2 (σ11 − σ22)) cos(3 ϕ)

+n2 (σ11 + σ22) (−1 + 2 ν) cos(ϕ + 4 θ) +
+ (6 n1 σ21 + 3 n2 (σ11 − σ22)) cos(ϕ− 2 θ)
− (−2 n1 σ21 − n2 (σ11 + σ22 (3− 4 ν)− 4 σ11 ν)) cos(ϕ + 2 θ) +(
− 8 n1 σ21 + n2 (−7 σ11 − 3 σ22 + 10 σ11 ν + 10 σ22 ν) +

4 n1 arctan(cot(ϕ + θ)) ((σ11 + σ22)(1− 2 ν) + (σ11 − σ22) cos(2 ϕ)−
2 σ21 sin(2ϕ))

)
cos(ϕ) +

(
4 n2 σ21 + n1 (−9 σ11 − σ22 + 10 σ11 ν + 10 σ22 ν)−
4 n2 arctan(cot(ϕ + θ)) ((σ11 + σ22)(1− 2 ν) + (σ11 − σ22) cos(2 ϕ)−
2 σ21 sin(2ϕ))

)
sin(ϕ) +

(−4 n1 σ11 + 8 n2 σ21 + 4 n1 σ22) sin(3 ϕ) +
(−6 n2 σ21 + 3 n1 (σ11 − σ22)) sin(ϕ− 2 θ) +
(2 n2 σ21 + n1 (σ11 − σ22)) sin(ϕ + 2 θ)−

n1 (σ11 + σ22) (−1 + 2 ν) sin(ϕ + 4 θ)

]}

Appendix 2 - Strongly singular kernel integration
at a corner.

This appendix focuses on the mathematical passages required by the free term
analysis of the strongly singular integral (15). By assuming x ∈ Ω and in view of
identity (16), consider the two integrals of (15) in the local references L+, L−:

∫

Γ−ε
G−

pu dΓ =
∫ 0

−ε

G−
pu dy1 + O(ε)

∫

Γ+
ε

G+
pu dΓ =

∫ ε

0

G+
pu dy1 + O(ε)

In order to sum all contributions, the same coordinate system must be set. With
reference to figure 5 the matrix

A =
(

cosϕ − sin ϕ
sin ϕ cosϕ

)
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governs the reference change between L− and L+: accordingly X− = AT X+ A
for any tensor X+ in the local reference L+ and x− = AT x+ for any vector x+ in
the local reference L+. For being

p− = ATp+ ∼ ATG+
pu p+(x0) = ATG+

puAATp+(x0) = ATG+
puA σ−(x0) ATl+(x0)

it comes out that integral (15) holds:
∫ 0

−ε

G−
pu dy1σ

−(x0) e−2 + AT

∫ ε

0

G+
pudy1A σ−(x0) ATl+

in reference L−. The integral

∫ ε

0

G+
pp dy+

1 = log ‖r+‖Lpu + arctan
(

r+
1

x+
2

)
Apu +

1
r2

Spu

∣∣∣∣
r+
1 =x+

1 + ε
2

r+
1 =x+

1 − ε
2

x ∈ Ω

has been solved in [2] by means of the variable change r+ = x+ − y+; matrices
Lpu, Apu, and Spu follow in the local reference L+:

Lpu =
1

4π(1− ν)

(
n1(−3 + 2ν) n2(−1 + 2ν)
n2(1− 2ν) n1(−1 + 2ν)

)

Apu =
1

2π(1− ν)

(
n2(−1 + ν) −n1ν
n1(−1 + ν) n2(−1 + ν)

)

Spu =
r2

4π(1− ν)

(
n2r1 − n1r2 n1r1 + n2r2

n1r1 + n2r2 −n2r1 + n1r2

)

One has therefore when x ∈ Ω
∫ 0

−ε

G−
pu dy1σ

−(x0) e−2 + AT

∫ ε

0

G+
pudy1A σ−(x0) ATl+ =

[
log ‖r−‖Lpu + arctan

(
r−1
x−2

)
Apu +

1
r2

Spu

]r−1 =x−1 + ε
2

r−1 =x−1 − ε
2

σ−(x0) e−2 +

[
log ‖r+‖AT Lpu A + arctan

(
r+
1

x+
2 (x−)

)
AT Apu A +

1
r2

AT Spu A
]r+

1 =x+
1 (x−)+ ε

2

r+
1 =x+

1 (x−)− ε
2

σ−(x0) ATl+

The limit to the boundary Ω 3 x → x0 ∈ Γ is taken by means of the norm
||x − x0|| → 0 and of a direction, selected through the angle θ as in figure 6.
Denote with:

lim
x→x0





[
Spu

r2

]x−1 + ε
2

x−1 − ε
2

σ−(x0) e−2 +
[
AT Spu A

r2

]x+
1 (x−)+ ε

2

x+
1 (x−)− ε

2

σ−(x0) ATl+





= spu(θ, ϕ,n, σ, ν)
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lim
x→x0





[
arctan

(
r+
1

x+
2 (x−)

)
AT Apu A

]x+
1 (x−)+ ε

2

x+
1 (x−)− ε

2

σ−(x0) ATl++

[
arctan

(
r−1
x−2

)
Apu

]x−1 + ε
2

x−1 − ε
2

σ−(x0) e−2



 = apu(θ, ϕ,n,σ, ν)

where ϕ is the angle between the normals l+ and l− ≡ e−2 as in figure 6, n is the
selected direction, and ν is Poisson’s coefficient of the body. 3

Functions spu and apu, being independent on ε, act as free terms. It is worth
noting that spu vanishes at ϕ = 0 for any θ, as expected from the free term analysis
on smooth boundaries. Further, at ϕ = 0 it holds l+ ≡ e−2 and

apu(θ, ϕ,n, σ, ν) =
1
2

1
1− ν

(
(1− ν)n2 ν n1

(1− ν)n1 (1− ν)n2

)
σ(x0) e−2

By comparison with equation (27) of reference [1] the role of apu as a free term is
confirmed. Finally, it holds:

lim
x→x0

{[
log ‖r−‖Lpu

]x−1 + ε
2

x−1 − ε
2

σ−(x0) e−2 +
[
AT Lpu A log ‖r+‖]x+

1 (x−)+ ε
2

x+
1 (x−)− ε

2
σ−(x0) ATl+

}

= lpu(ϕ,n, σ, ν) log ‖ε‖ − l1pp(ϕ,n, ε(σ), G, ν) lim
x→x0

log ‖x− x0‖

with l1pp defined in appendix 1. Note that l1pp and lpu vanish at ϕ = 0 and do not
depend on θ. By introducing the HFP,

=
∫ 0

−ε

G−
pu dy1σ

−(x0) e−2 + AT =
∫ ε

0

G+
pu dy1A σ−(x0) ATl+ =

AT =
∫ 0

−ε

G+
pu dr1Aσ−(x0) ATl+ + =

∫ ε

0

G−
pu dr1σ

−(x0) e−2 =

1
4π(1− ν)

[(
n−1 (−3 + 2ν) n−2 (−1 + 2ν)
n−2 (1− 2ν) n−1 (−1 + 2ν)

)
σ−(x0) e−2 +

−AT

(
n+

1 (−3 + 2ν) n+
2 (−1 + 2ν)

n+
2 (1− 2ν) n+

1 (−1 + 2ν)

)
Aσ−(x0) ATl+

]
log ‖ε‖

it is possible to show, by direct integration, that

=
∫ 0

−ε

G−
pu dy1 σ−(x0) e−2 + AT =

∫ ε

0

G+
pu dy1Aσ−(x0) ATl+ = lpu(ϕ,n,σ, ν) log ‖ε‖

Accordingly,

lim
x→x0

{∫ 0

−ε

G−
pu dy1σ

−(x0) e−2 + AT

∫ ε

0

G+
pu dy1A σ−(x0) ATl+

}
=

3Note that the limits above do not exist, for they depend on the direction θ by which x → x0

(see figure 6); accordingly spu, apu are but notations, not definitions.
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=
∫ 0

−ε

G−
pu dy1 σ−(x0) e−2 + AT =

∫ ε

0

G+
pudy1Aσ−(x0) ATl+ +

spu + apu − l1pp(ϕ,n, ε(σ), G, ν) lim
x→x0

log ‖x− x0‖ (32)

The limit (32) is a fundamental result for the free term analysis: it shows that, in
the presence of corners, the strongly singular integral produces unbounded terms
that do not cancel out in the limit process Ω 3 x → x0 ∈ Γ. The limit (32) equals
Hadamard’s finite part, plus an unbounded logarithmic term and the following
factor

Dpu(x0,n(x0)) =
def

spu + apu (33)

which plays the role of free term, being independent on ε. Such a term depends
on the selected direction in the limit process, and cannot be defined as a result of
a limit process (32).

In conclusion, the strongly singular kernel shows the same peculiarities of the
hypersingular kernel with regard to the free term analysis. As seen in section 4,
these facts provide a fundamental property for the global problem.

The sum spu + apu is here extensively written for its interest in what follows.

spu + apu =
1

32 π (−1 + ν)

{

−4 sin(ϕ)
(
2 (n2 σ21 + n1 σ22) cos(ϕ) + 2

[
(n2 σ11 + 2 n1 σ21 − n2 σ22) cos(2 ϕ− θ) +

+ (n1 σ11 − 2 n2 σ21 − n1 σ22) sin(2 ϕ− θ)
]

sin(ϕ + θ)
)

+

+4 cos(2 ϕ)
(
n1 σ21 − n2 σ22 + 2 n1 (σ11 (−1 + ν) + σ22 ν) arctan(cot(ϕ + θ)) +

−n1 π (σ11 (−1 + ν) + σ22 ν)
sgn(csc(ϕ + θ) sin(θ))

)
+

−2 sin(2 ϕ) (−2 n1 σ21 + n2 (σ11 + σ22) (−1 + 2 ν))
(2 arctan(cot(ϕ + θ))− π | csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ)) +

+cos(3 ϕ) (−4 n1 σ11 + 8 n2 σ21 + 4 n1 σ22) +
+cos(4 ϕ) (2 n2 σ21 + n1 (−σ11 + σ22))

(2 arctan(cot(ϕ + θ))− π | csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ)) +
+ sin(4 ϕ) (2 n1 σ21 + n2 (σ11 − σ22))

(2 arctan(cot(ϕ + θ))− π | csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ)) +
−16 (n1 σ22 ν + n2 (σ21 − σ21 ν)) arctan(cot(θ)) +
−2 (2 n2 σ21 (−3 + 4 ν) + n1 (σ22 − 4 σ22 ν + σ11 (−5 + 4 ν))) arctan(cot(ϕ + θ)) +
−4 (− (n2 (σ22 + 2 π σ21 (−1 + ν))) + n1 (σ21 + 2 π σ22 ν)) +
+π (2 n2 σ21 (−3 + 4 ν) + n1 (−5 σ11 + σ22 + 4 σ11 ν − 4 σ22 ν))

| csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ),

−4 sin(ϕ)
(
2

[
(−2 n2 σ21 + n1 (σ11 − σ22)) cos(2 ϕ− θ) +
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+(−2 n1 σ21 + n2 (−σ11 + σ22)) sin(2 ϕ− θ)
]

sin(ϕ + θ)
)

+

+sin(2 ϕ)(
4 (2 n2 σ21 + n1 (σ11 + σ22) (1− 2 ν)) arctan(cot(ϕ + θ)) +

+
−2 n1 π σ11 − 4 n2 π σ21 + 4 n1 π (σ11 + σ22) ν

sgn(csc(ϕ + θ) sin(θ))
+

−2 (2 n1 σ21 − 2 n2 σ22 + n1 π σ22 | csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ))
)

+

+cos(2ϕ)(
− 4 (n2 σ21 + n1 σ22 + 2 n2 (σ22 (−1 + ν) + σ11 ν) arctan(cot(ϕ + θ))) +

+
4 n2 π (σ22 (−1 + ν) + σ11 ν)

sgn(csc(ϕ + θ) sin(θ))

)
+

+cos(4 ϕ) (2 n1 σ21 + n2 (σ11 − σ22))
(2 arctan(cot(ϕ + θ))− π | csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ)) +

+ sin(4 ϕ) (2 n2 σ21 + n1 (−σ11 + σ22))
(−2 arctan(cot(ϕ + θ)) + π | csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ)) +

+16 (n1 σ21 + n2 σ22) (−1 + ν) arctan(cot(θ)) +
−2 (2 n1 σ21 (−3 + 4 ν) + n2 (σ11 − 4 σ11 ν + σ22 (−5 + 4 ν))) arctan(cot(ϕ + θ)) +
+4 (n1 (σ22 + 2 π σ21 (−1 + ν)) + n2 (σ21 + 2 π σ22 (−1 + ν))) +
+π (2 n1 σ21 (−3 + 4 ν) + n2 (σ11 − 5 σ22 − 4 σ11 ν + 4 σ22 ν))

| csc(ϕ + θ)| | sin(θ)| csc(θ) sin(ϕ + θ)

}
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