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Abstract

A Boundary Element Method (BEM) model for the propagation of non-
linear free-surface waves is described and its application to the study of the
hydrodynamic characteristics associated with the roll-motion of 2-D hull sec-
tions is presented. The roll-motion of the hull section is modeled as a mixed
boundary value problem and solved using a higher-order (linear strength dis-
tribution) BEM coupled with a Mixed-Eulerian-Lagrangian (MEL) scheme for
the time-dependent free-surface boundary conditions. Applications, that in-
clude the propagation of fifth-order Stokes waves and waves generated by a
piston wave-maker, used to validate the BEM scheme prior to its application
to the hull roll-motion are also described.

1 Introduction

In comparison to Finite Difference Methods (FDM), Finite Volume Methods (FVM)
and other numerical techniques, the Boundary Element Method (BEM) can be used
to model the free-surface with relative ease within the framework of potential the-
ory. Potential-flow methods have been extensively used for the numerical solution
of water waves and studies of wave-body interactions (see Longuet-Higgins and
Cokelet [1976], Faltinsen [1977], Vinje and Brevig [1981], Lin et al. [1984], Dold
and Peregrine [1984], Grosenbaugh and Yeung [1989], Grilli and Svendsen [1989]
for 2-D applications, and Liu et al. [2001], Sung and Grilli [2005] for more recent
high-order 3-D BEM applications). A detailed review of the application of BEM
and other numerical methods for the computation of nonlinear free-surface flows
and past research can be found in Yeung [1982], Tsai and Yue [1996].

The BEM model presented here forms an integral part of an overall research
effort to model the unsteady, viscous flow associated with the roll-motion of 2-D
hull-sections with or without bilge keels. The focus of the research is on obtaining
the hydrodynamic added-mass and damping coefficients at different amplitudes and
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frequencies of roll-motion. Viscous effects, neglected in the potential-flow based
BEM scheme, play a major role in damping hull roll-motions. A FVM based Navier-
Stokes Solver (Kinnas et al. [2003], Yu et al. [2005]), developed independently, is
used to capture the viscous effects combined with linear boundary conditions on
the free-surface. In this context, the aim of the BEM model is to study the extent
to which the linear free-surface boundary conditions are applicable.

It is important that any numerical model be validated against analytical or
experimental results if available. This paper primarily focusses on the validation
studies performed to verify the accuracy of the BEM model in propagating nonlinear
free-surface waves. Two validation studies are performed : (1 ) The propagation of
Stokes waves based on the fifth-order gravity wave theory of Fenton [1985]. In
this case the numerical results are compared with the analytical wave profiles. (2 )
The waves generated by the sinusoidal motion of a piston wave-maker. The results
obtained from the BEM model are compared with the numerical results of Lin
[1984] in this case. Representative results for the roll-motion analysis of FPSO
hull-sections are also presented.

2 Mathematical Formulation

An ideal fluid is assumed and the flow is described in terms of a velocity potential
with the additional assumption of being irrotational. A Cartesian coordinate sys-
tem, x = (x, y), fixed in space is chosen with the origin at the undisturbed water
level. x represents the horizontal direction and y the vertical direction, positive
upward. The flow, expressed in terms of the velocity potential ϕ(x, t), satisfies the
Laplace equation

∇2ϕ(x, t) = 0; x ∈ Ω(t) (1)

where t is the time and Ω(t) represents the fluid domain. In general, the roll-motion
analysis or the propagation of waves is formulated as an initial boundary-value
problem (BVP) for the velocity potential ϕ(x, t) and solved with either Neumann
or Dirichlet type conditions specified on the boundaries. In the next three sections,
the initial and boundary conditions specific to the modeling of the roll-motion of a
hull section, the propagation of fifth-order gravity waves and the piston wave-maker
are outlined.

2.1 Roll-motion of Hull-section

For the roll-motion of a 2-D hull-section (see Fig. 1), F(t) and H(t) represent the
instantaneous positions of the free-surface and hull surface respectively; Σ repre-
sents the far-field boundary used to truncate the infinite domain into a finite one
and placed far enough from the hull to avoid reflection of the radiated waves. n

(not shown in the Fig. 1) is the unit normal to a surface, positive inward.
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Figure 1: Hull-section roll-motion : Fluid domain and corresponding boundaries

2.1.1 Boundary Conditions on Free-surface, F(t)

Fully nonlinear boundary conditions are imposed on the free-surface F(t). The
dynamic boundary condition in the Lagrangian form is

Dϕ

Dt
=

1

2
|∇ϕ|2 − gη − PF; x ∈ F(t) (2)

satisfied on the exact free-surface. In (2), D
Dt

≡ ∂
∂t

+ ∇ϕ · ∇ denotes the material
derivative, η ≡ η(x, t) is the instantaneous free-surface and PF is the pressure on
the free-surface assumed to be zero.

An equally important free-surface boundary condition is the kinematic bound-
ary condition also represented in the Lagrangian form as

Dx

Dt
= ∇ϕ; x ∈ F(t) (3)

2.1.2 Boundary Condition on Hull, H(t)

On the hull surface H(t),

∇ϕ · n = V(x, t) · n; x ∈ H(t) (4)

V(x, t) is the prescribed motion of the hull. In the case of roll, the hull is subject
to a forced sinusoidal angular motion of the form

α(t) = α0 sin(ωt) (5)

where α0 is the amplitude of roll motion and ω is the corresponding circular fre-
quency. In terms of Cartesian components, the prescribed roll motion is
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V(x, t) = (−yα̇, xα̇) (6)

2.1.3 Boundary Condition on Far Field Boundary, Σ

The far-field boundary Σ is assumed to be a no-flux surface and the corresponding
boundary condition is

∇ϕ · n = 0; x ∈ Σ (7)

Special attention is paid to place the boundary far away from the body to avoid
reflection of the waves generated by the hull motion. The simulation is terminated
before the waves reach the far-field boundary.

2.1.4 Initial Conditions

At time t = 0, the relevant initial conditions are

ϕ(x, 0) = 0
η(x, 0) = 0

}

x ∈ F(t) (8)

2.2 Fifth-order Gravity Waves

The fluid domain Ω(t) and its corresponding boundaries are as shown in Fig. 2.
F(t) represents the instantaneous position of the free-surface, U(t) and D(t) are the
upstream and downstream periodic boundaries of the domain, and B(t) represents
an impervious bottom surface.

The boundary condition on the free-surface F(t) are identical to that applied
in the case of the roll-motion of a hull-section.

2.2.1 Boundary Condition on U(t), D(t)

U(t) and D(t) represent the periodic inflow and outflow wave boundaries respec-
tively. In the modeling of the propagation of the Stokes waves, kinematic boundary
conditions of the form

U(t) : ∇ϕ · n = uw

D(t) : ∇ϕ · n = −uw
(9)

are imposed on these surfaces. Here n is the unit surface normal positive inward.
uw is the horizontal velocity component corresponding to a fifth-order Stokes wave
and has the form
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uw = u∗

w

5
∑

n=1

ǫn n an cosh (nks) cos (nθ) (10)

where s = d + y and θ = 2π( x
L
− t

T
) with T being the wave period and L the

wavelength; ǫ = kH
2 is the dimensionless expansion parameter with H being the

wave height and k = 2π
L

the wavenumber; an are coefficients that are functions of

ǫ and d
L
; u∗

w is the dimensional scaling velocity. This form is consistent with the
fifth-order gravity wave theory of Fenton [1985]. For brevity only the functional
form is presented here and a more detailed explanation of the terms in (10) can be
found in Fenton [1985].

D(t)U(t)

B(t)

L

ds

F(t)

Ω(t)

x

y

uw

vw

Figure 2: Fifth-order Stokes Wave : Fluid domain and corresponding boundaries, d:
water depth, L: wavelength, y : wave elevation, s = d + y

2.2.2 Boundary Condition on B(t)

The bottom surface is assumed to be immovable and impervious and the corre-
sponding boundary condition is

∇ϕ · n = 0; x ∈ B(t) (11)

2.2.3 Initial Conditions

At time t = 0, i.e., at the beginning of the simulation, the following conditions are
applied on the free-surface

ϕ(x, 0) = ϕw(x, 0)
η(x, 0) = ηw(x, 0)

}

x ∈ F(t) (12)
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where ϕw and ηw are the velocity potential and wave elevation corresponding to a
fifth-order Stokes wave. The functional forms of ϕw and ηw are described in detail
in Fenton [1985].

2.3 Piston Wavemaker

The fluid domain Ω(t) corresponding to a numerical wave tank with a piston wave-
maker is as shown in Fig. 3. W(t) represents the instantaneous position of the
wavemaker and has a sinusoidal horizontal translation of the form

xp(t) = −
A

2
cos(ωt) (13)

where A is the amplitude or stroke of the piston wavemaker and ω is the circular
frequency of the sinusoidal motion. F(t) is the instantaneous free-surface; B(t) is
the impervious bottom surface; D is the downstream wall of the wave tank.
The boundary condition on the free-surface F(t) are identical to that applied in the
case of the previous two cases and is not repeated here for brevity.

2.3.1 Boundary Condition on Wave-maker, W(t)

Along the piston surface, a kinematic boundary condition of the form

∇ϕ · n = up(t); x ∈ W(t) (14)

is applied, where n is the unit surface normal pointing into the fluid domain. From
the sinusoidal motion of the piston as specified by (14), we have

up(t) = ẋp(t) =
A

2
ω sin(ωt) (15)

2.3.2 Boundary Condition on B(t), D

Both the bottom and downstream surfaces are assumed to be no-flux surfaces and
the following kinematic boundary condition is applied

∇ϕ · n = 0; x ∈ B(t), D (16)

2.3.3 Initial Conditions

At time t = 0, the relevant initial conditions are

ϕ(x, 0) = 0
η(x, 0) = 0

}

x ∈ F(t) (17)
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Figure 3: Piston Wavemaker : Fluid domain and corresponding boundaries, h: wave tank

depth, A: Piston stroke, Lt: Mean length of wave-tank

It can be observed from the sinusoidal motion, as specified by (13), that the wave-
maker is at a position of extreme displacement of xp(0) = −A

2 at time t = 0. This
arrangement is introduced to prevent an impulsive start to the simulation with
non-zero velocities at the wavemaker.

2.4 Boundary Integral Equation

The BVP for the velocity potential is converted into a Boundary Integral Equation
(BIE) by introducing a Green’s function G(p,q) = − 1

2π
ln rpq (satisfies the Laplace

equation), where rpq = |p − q|, p ≡ p(x) is the field point and q ≡ q(x) is the
source point. The BIE obtained by applying Green’s third identity to ϕ(x, t) and
G(p,q) is

α(p)ϕ(p) +

∫

Γ

ϕ(q)
∂G(p,q)

∂n(q)
dΓq =

∫

Γ

G(p,q)
∂ϕ(q)

∂n(q)
dΓq (18)

where p ∈ Γ and Γ represents the boundary of the fluid domain, Γ ≡ F∪ H∪Σ or
Γ ≡ F∪U∪B∪D or Γ ≡ F∪W∪B∪D depending on the type of simulation; α(p)
is the internal angle formed at the boundaries (a coefficient introduced as a result
of the exclusion of the singular nature of the Green’s function).
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3 Numerical Formulation

Two important aspects that dominate the numerical formulation of the problem are
(1 ) the solution of the boundary integral equation (18) and, (2 ) the time integration
of the free-surface boundary conditions (2) and (3).

In the BEM model presented here, a Mixed Eulerian Lagrangian (MEL) scheme
of Longuet-Higgins and Cokelet [1976] is used to solve the boundary value problem
with the fully nonlinear free-surface boundary conditions. The MEL scheme com-
prises of two steps :(1 ) solve a well-defined boundary value problem with Neumann
or Dirichlet type boundary conditions using BEM; (2 ) advance the free-surface in
time using the time dependent free-surface boundary conditions. These two steps
are repeated at each step of a higher-order time marching scheme.

3.1 Solution of BIE

Linear iso-parametric elements form the basis for the numerical solution of the BIE
(18). The variation of ϕ and q ≡ ∂ϕ

∂n
within each element, and the geometry of the

element are defined as, following the notation given in Wrobel [2002] and Brebbia
[1978],

ϕ(ξ) = N1(ξ)ϕ1 + N2(ξ)ϕ2

q(ξ) = N1(ξ)q1 + N2(ξ)q2

}

(19)

and,
x(ξ) = N1(ξ)x1 + N2(ξ)x2

y(ξ) = N1(ξ)y1 + N2(ξ)y2

}

(20)

where (ϕ1, q1) and (ϕ2, q2) are the values of the potential and the flux at the two
nodal points of the element. To ensure the compatibility of the potential and flux
between the elements, the two nodal points are chosen to be the end-points of the
element specified by the coordinate pairs (x1, y1) and (x2, y2) respectively. With the
nodal points at the end-points of the element, the interpolation or shape functions

N1(ξ) and N2(ξ) can be written in the form

N1(ξ) = 1
2 (1 − ξ) ; N2(ξ) = 1

2 (1 + ξ) (21)

where ξ is the intrinsic element coordinate, −1 ≤ ξ ≤ +1.
Based on the approximations (19) and (20), the discretized form of (18) can be

written as, applied at a node i

αiϕi +

Ne
∑

j=1

∫

Sj

q∗(N1ϕ1 + N2ϕ2)dSj =

Ne
∑

j=1

∫

Sj

ϕ∗(N1q1 + N2q2)dSj (22)
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where q∗ ≡ ∂G(p,q)
∂n(q) and ϕ∗ ≡ G(p, q); Ne is the total number of boundary elements.

Following the notation given in Wrobel [2002], the discretized form of the BIE in
eq. (22) can be written in a matrix form

Hϕϕϕ = GQ (23)

where H and G are the influence coefficient matrices; ϕϕϕ and Q are the vectors
containing the nodal values of the potential and its normal derivatives. The elements
of the influence coefficient matrices have the form

Gij = g2
i,j−1 + g1

i,j

Ĥij = h2
i,j−1 + h1

i,j

}

(24)

where,

gk
ij =

∫

Sj

ϕ∗Nk dSj ; hk
ij =

∫

Sj

q∗Nk dSj (25)

The integrals in eq. (25) are evaluated analytically to evaluate the influence coeffi-
cient matrices. An important aspect in the use of higher-order boundary elements
is the treatment of discontinuity in the flux q at corners (geometric discontinu-
ities) of the domain. In the current BEM scheme, a “double node” approach is
used to increase the number of degrees of freedom at a corner to three. This ap-
proach assumes that the potential is continuous but allows for the specification of
discontinuous fluxes before and after the node. However, out of the three degrees
of freedom, two are eliminated based on the boundary conditions unique to the
simulation under consideration.The linear system of equations in (23) is re-ordered
based on either Neumann or Dirichlet type boundary conditions specified on the
domain boundaries and can be written in the form

AX = F (26)

where X is the vector of unknowns and F is the so called “load” vector (Wrobel
[2002]). A direct LU-solver (Press et al. [1992]) is used to solve the re-ordered
system of equations.

3.2 Time Integration

A strictly Lagrangian approach is used for the time-integration of the free-surface
kinematic and dynamic boundary conditions. The free-surface boundary conditions
(2) and (3), are of the general form

DY

Dt
= f(t, Y ) (27)
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where, Y can be either x or ϕ. A fourth-order Runge-Kutta (RK4) scheme, as
shown below, is used to integrate (27) in time.































k1 = ∆t f(ti, Yi)
k2 = ∆t f(ti + 0.5∆t, Yi + 0.5k1)
k3 = ∆t f(ti + 0.5∆t, Yi + 0.5k2)
k4 = ∆t f(ti+1, Yi + k3)

Yi+1 = Yi + 1
6 (k1 + 2k2 + 2k3 + k4)

(28)

where ∆t is the discrete time-step. It may be noted that a BEM-step is solved at
each step of the RK4 time integration scheme.

3.3 Free-surface Corners

For hull roll-motion and wavemaker simulations, the intersection between the free-
surface and the moving structure has to be treated carefully to avoid numerical
instabilities. In addition to the “double-node” approach, velocity compatibility
conditions (see Grilli and Svendsen [1990]) are imposed at the intersection. These
conditions have the form

ϕS
s =

ϕS
n cos(βF − βS) − ϕF

n

sin(βF − βS)

ϕF
s =

ϕS
n − ϕF

n cos(βF − βS)

sin(βF − βS)

(29)

where ϕ
()
s and ϕ

()
n are the tangential and normal velocity components on the surface;

β() is a measure of the slope of the surface (see Fig. 4). The superscripts ( )F and ( )S

represent the free-surface F(t) and the moving structure H(t) or W(t) respectively.

4 Results

The BEM scheme is applied to the following cases : (1 ) the propagation of fifth-
order gravity waves, (2 ) transient waves generated by a piston wavemaker and
(3 ) 2-D simulation of hull-section in roll-motion. The results and details of these
simulations are described below.

4.1 Comparison with Analytic Solution : Fifth-order Gravity

Waves

A wave with wave length L = 65 m, wave height H = 5.0 m, wave period T = 6.38 s
and water depth d = 20 m ( d

gT 2 = 0.05, H
gT 2 = 0.0125, H

L
= 0.0769) is chosen
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Figure 4: Orientation of orthogonal coordinate systems and velocity components on a

boundary element surface; (x, y) Cartesian coordinate system, (s, n) tangential-normal

coordinate system; Γ : BEM surface

to simulate the propagation of periodic gravity waves. At the beginning of the
simulation, the characteristics of the wave as obtained from analytical expressions
of Fenton [1985] are specified as initial conditions on the free-surface. The BEM
scheme is then allowed to propagate the wave based on the boundary conditions
specified on the upstream and downstream surfaces, U(t) and D(t) respectively.

A comparison between the analytical (ηw , Fenton [1985]) and numerical (ηn)
wave profiles is shown in Fig. 5. The simulation is carried out for NF = 240 and
NT = 500 linear BEM panels with a time step ∆t = 0.025T . Here, NF is the total
number of panels on the free-surface F, and NT is the total number of panels over
the entire BEM domain T ≡ F∪D∪B∪U. The scheme is allowed to propagate the
waves for a total simulation time of 5.0T , and Fig. 5 compares the analytical and
numerical wave profiles between t = 4.0T and t = 4.8T at steps of 0.2T . It can be
observed that the BEM scheme is able to preserve the form and characteristics of
the initial wave profile over long periods of time.

The spatial and temporal convergence characteristics of the scheme are studied
by comparing the analytical and numerical drifts of a Lagrangian fluid particle
P[x(t), y(t)], placed at the intersection of the free-surface F(t) and the upstream
boundary U(t). To determine the analytical drift (particle trajectory), the system
of equations

Dx

Dt
= uw(x, y, t) ;

Dy

Dt
= vw(x, y, t) (30)

is numerically integrated using a fourth-order Runge-Kutte scheme. Here, uw and
vw respectively are the horizontal and vertical components of the wave velocity
(based on analytical expressions, Fenton [1985]).
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Figure 5: Comparison of numerical and analytical wave elevations between t = 4.0T and

t = 4.8T at steps of 0.2T ; x̄ = x/L, η̄w = ηw/L, η̄n = ηn/L : ηn : numerical wave

elevation, ηw : analytical wave elevation; BEM characteristics : Time step ∆t/T = 0.025,

Number of panels on the free-surface, NF = 240

The trajectory and time-history of the fluid particle P and its convergence
towards the analytical values are shown in Fig. 7 and Fig. 6 respectively. These
figures summarize the results of simulations performed over a duration of 5.0T
for NF = 30,60,120,240 (NT = 75,150,300,500) and ∆t = 0.0125T , 0.025T . To
quantify the convergence characteristics of the BEM scheme, the error between
the analytical and numerical particle trajectories is compared at the end of the
simulation, t = 5.0T , for different levels of discretization and time-steps. It is
observed that (see Fig. 8) for ∆t = 0.0125T and ∆t = 0.025T , |ǫx(t)| ≈ O(∆x̄1.1)
and |ǫy(t)| ≈ O(∆x̄1.25). Here, ǫx(t) and ǫy(t) are the errors between the analytical
and numerical x̄(t) ≡ x(t)/L and ȳ(t) ≡ y(t)/L respectively, ∆x̄ = 1

NF

is a measure
of the panel length.

It is important that the BEM scheme conserve mass and for free-surface simula-
tions this property can be quantified by monitoring the area under the free-surface
ηarea (ideally ηarea = 0). Fig. 9 illustrates the time-history of η̄area = ηarea/L2

for different levels of discretization. The maximum error in η̄area is observed to be
3 × 10−2% and 6.5 × 10−4% for NF = 30 and NF = 240 respectively.
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Figure 6: Time history : Convergence of the trajectory of a fluid particle P[x(t), y(t)] at

the upstream boundary with increase in NF, number of panels on the free-surface: (a) NF

= 30, (b) NF = 60, (c) NF = 120, (d) NF = 240, (e) Analytical trajectory; Time step ∆t/T

= 0.025; x̄ = x/L, ȳ = y/L, t̄ = t/T
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Figure 7: Convergence of the trajectory of a fluid particle P[x(t), y(t)] at the upstream

boundary with increase in NF, Number of panels on the free-surface : (a) NF = 30, (b) NF

= 60, (c) NF = 120, (d) NF = 240, (e) Analytical trajectory; Time step ∆t/T = 0.025;

x̄ = x/L, ȳ = y/L, t̄ = t/T
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Figure 8: Convergence characteristics of the error between the analytical and numerical
particle trajectories at time t = 5.0T for (a) ∆t = 0.025T , and (b) ∆t = 0.0125T ; (−◦−)
ǫx(t) : error in x(t), (−�−) ǫy(t) : error in y(t), ∆x̄ = 1
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Figure 9: Variation of the area under the free-surface with time; Convergence with increase

in NF, number of panels on the free-surface:(a) NF = 30, (b) NF = 60, (c) NF = 120, (d)

NF = 240; η̄area = ηarea/L2 : area under the free-surface; Time step ∆t/T = 0.025

4.2 Comparison with other Numerical Method : Piston

Wavemaker

The next stage in the verification of the BEM scheme is the study of the transient
waves generated by a piston wavemaker and forms an intermediate step in the
application of the scheme to wave-body interactions. The numerical results from
Lin [1984], based on the solution of the Cauchy’s Integral Theorem, provide a basis
for the verification of the transient waves generated by the wavemaker. For the
simulation, a wave tank of depth h = 1.0 is chosen with a mean length of Lt = 10h.
The piston wavemaker placed at the left end of the tank has a stroke A = 0.1h and
oscillates with a period of T = 4.0 (ω = 0.5π). These quantities, in non-dimensional
form, are consistent with the parameters specified in Lin [1984].

Fig. 10 compares the transient wave elevations between Lin [1984] and the
BEM scheme at t = 2T and t = 4T (the intermediate steps are not presented for
clarity). The simulations are performed with NF = 200 and time steps ∆t = 0.02T
and ∆t = 0.01T . The overall comparison between the two methods is good and a
detailed analysis of the wavemaker is not undertaken as its sole purpose is to verify
the accuracy of the BEM scheme.
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Figure 10: Piston wave-maker : Comparison of wave elevations between Lin [1984]
and BEM scheme (a) ∆t/T = 0.02, (b) ∆t/T = 0.01; Ā = 0.1, T = 4.0, NF = 200;
η̄ = η/h : wave elevation, x̄ = x/h
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4.3 Hull-section in Roll Motion

The BEM scheme verified in the previous two sections is now applied to the roll-
motion of a 2-D hull section. Two important parameters that govern the roll-motion
of the hull-section are (1 ) the amplitude of roll-motion, α0 and (2 ) the Froude
number, ω̃, representing the non-dimensional frequency of roll-motion and

ω̃ = ω

√

b

g
(31)

where ω (rad./s) is the frequency of roll-motion and b = 0.5B, with B being the
breadth of the hull-section.

The primary aim of the scheme is to ascertain the extent to which linear free-
surface boundary conditions are applicable and the results presented here focus on
this aspect. A representative w̃ = 0.6 is chosen and the effects of non-linearity are
analyzed for different amplitudes of roll-motion. Fig. 11 and Fig. 12 illustrate the
position of the hull and the free-surface elevation for a fully non-linear simulation
with α0 = 0.40 rad.(≈ 23◦) over a duration of 8T , where T = 2π

ω
is the period of

oscillation. Fig. 12 also shows a few Lagrangian fluid particles that are tracked
to model the free-surface. For both the port and starboard side free-surfaces, 400
BEM panels are used over a length of ≈ 100B. The panels are distributed to have
a dense distribution close to the hull and a coarse one further away to increase the
computational efficiency. A time-step of ∆t = 0.01T is used for the fourth-order
Runge-Kutta scheme.

A comparison of the free-surface elevations obtained from the linear and non-
linear versions of the BEM scheme is shown in Fig. 13. For α0 = 0.05 rad (≈
3◦), there is no discernible difference between the linear and non-linear free-surface
elevations. However, this is not true in the case of α0 = 0.40 rad (≈ 23◦), where the
effect of the non-linear free-surface boundary conditions is clearly evident with the
presence of secondary waves of smaller wavelength. A similar observation is made
in Fig. 14(a), where the effect of the non-linear free-surface boundary conditions
is shown to increase with the amplitude of roll. An alternate way to represent the
effects of non-linearity is to scale the wave elevations with the amplitude of roll α0,
see Fig. 14(b). Ideally for a linear phenomenon, the scaled free-surface elevations
should be identical. It can be observed that up to an amplitude of roll of α0 = 0.1
rad (≈ 6◦), the effects of non-linearity are small.

A convergence test is also carried out to ascertain the grid-independence of
the non-linear secondary waves seen in Fig. 14 by varying the number of elements
on the free-surface. For NF = 400 and NF = 500, the free-surface elevations are
identical in the vicinity of the hull and the presence of the secondary waves is still
observed (see Fig. 15). Here, NF is the number of BEM panels on the port or
starboard free-surfaces.
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Figure 11: Hull-section and free-surface; ω̃ = 0.6, α0 = 0.4 rad;(Note : the horizontal and
vertical scales are identical)
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Figure 12: Hull-section and free-surface with actual Lagrangian fluid particles; ω̃ = 0.6,
α0 = 0.4 rad; x̄ = x/B; (Note : the horizontal and vertical scales are identical)
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Figure 13: Comparison of linear and non-linear free-surface elevations; (a) α0 = 0.05 rad,
(b) α0 = 0.40 rad; ω̃ = 0.6; NF = 400, Number of panels on the starboard free-surface;
(Note : the horizontal and vertical scales are not identical)
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Figure 14: Scaled and un-scaled wave-elevations; ω̃=0.6; η̄ = η/B : free-surface elevation;

η̂ = η̄ 0.05

α0
scaled wave elevation;x̄ = x/B;NF = 400, Number of panels on the starboard

free-surface; (Note : the horizontal and vertical scales are not identical)
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Figure 15: Convergence of free-surface elevations with increase in number of panels on
the free-surface (a) NF = 100 (b) NF = 200 (c) NF = 400 (d) NF = 500; NF is the number
of panels on the starboard side free-surface (Note : the horizontal and vertical scales are
not identical)

5 Concluding Remarks

A BEM scheme, coupled with a Mixed-Eulerian-Lagrangian approach, was devel-
oped with an intent to model the free-surface associated with the roll-motion of
a 2-D hull section. Prior to its application to the roll-motion of the hull-section,
the scheme was validated through an application to the propagation of fifth-order
gravity waves (analytical method) and the transient waves generated by a piston
wave-maker (alternate numerical method). The scheme was found to have a spatial
rate of convergence of O(∆x̄) which is consistent with the use of linear BEM panels.

In the case of roll motion, the effects of nonlinearity was found to increase
with the amplitude of roll motion. It was observed that, up to an amplitude of
roll of α0 = 0.1 rad (≈ 6◦), the effects of non-linearity are small and the use of
linear free-surface boundary conditions is justified. However, for amplitudes of roll
α0 > 0.1 rad, it is important to follow a non-linear approach to the modeling of the
free-surface.

The current scheme can be extended further to analyze a wide-range of appli-
cation of 2-D and 3-D wave-body interactions. The applications include the devel-
opment of a numerical wave tank to analyze the response of a hull in an ambient
wave environment.
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