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Abstract

In this paper some two dimensional infiltration problems are considered. The
problems involve infiltration from periodic irrigation channels into a soil which
contains impermeable sheets of finite width. The problems are reduced to
boundary integral equations which may be solved numerically using established
procedures. Numerical results are obtained to provide the distribution of the
matric flux potential for some particular combinations of impermeable sheets and
a semi-circular channel. The results indicate how the length, number and the
depth of impermeable layers influences the distribution of water in an irrigated
area.

1. Introduction

The study of infiltration problems from single or periodic channels has been con-
sidered by a number of authors. For example steady infiltration problems of this
type have been considered by Philip [1-3], Wooding [4], Raats [5,6], Zachmann and
Thomas [7], Pullan and Collins [8] and Batu [9,10] while time dependent problems
have been solved by Lomen and Warrick [11] and Warrick [12]. These authors all
consider infiltration through a uniform homogeneous soil.

The current study is concerned with the solution of a class of infiltration problems
for a homogeneous soil which contains one or more impermeable layers of finite
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width (see Figure 1). A boundary integral formulation is used to facilitate the
numerical solution of the governing differential equation and this is then used to
determine the effect of the impermeable layers on the distribution of the matric
flux potential throughout the soil. The solutions are relevant in assessing the
influence of impermeable layers on infiltration from irrigation furrows.
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Figure 1: Periodic semi-circular channels with two impermeable layers

2. Statement of the Problem

Referred to a Cartesian frame OXY Z consider an isotropic homogeneous soil
lying in the region Z > 0 with OZ vertically downwards. The region contains
a periodic series of semi-circular channels and impermeable layers which have a
geometry which does not vary in the OY direction (see Figure 1). Each of the
identical channels has surface area 2L per unit length in the OY direction where
L is a reference length. The spacing between channels is denoted by 2b so that
the vertical planes X = ±(2m − 1)(a + b) for m = 1, 2, 3, · · · with a = 2L/π lie
half-way between adjacent channels (see Figure 1). The identical channels and
impermeable layers are such that the geometry of the region Z > 0 is symmetrical
about the planes X = ±m(a + b) for m = 0, 1, 2, 3 · · · .

The channels are filled with water. The problem is to determine the matric flux
potential Θ(X, Z), the flow throughout the soil in Z > 0 and the effect of the
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impermeable layers on this flux and flow.

Due to the symmetry of the problem there will be no flow across the planes
X = ±m(a+b) for m = 0, 1, 2, 3, · · · and hence it is sufficient to consider one of the
identical regions (2m− 1)(a+ b) < X < (2m+1)(a+ b) for m = 0,±1,±2,±3, · · ·
with a zero normal flow condition across the bounding planes. Attention is there-
fore restricted to the region Z > 0, |X | < (a + b) which will be denoted by Ω
with boundary ∂Ω. In this region there are N plane impermeable layers of finite
width which do not intersect with the boundary of the region Ω or with other
impermeable layers (see Figure 1). The nth layer is defined to start at coordinates
(a(n), b(n)) and end at (c(n), d(n)). The surface boundary of Ω along Z = 0 outside
the channel is denoted by C1 and C3 and the surface of the channel by C2 (see
Figure 1). The boundary of Ω along X = (a+ b) is denoted by C4 and the bound-
ary along X = −(a + b) by C5. The union of the surfaces of all the impermeable
layers will be referred to as D. On C1 and C3 the normal flow is taken to be zero
while a uniform constant normal flow is specified over the surface of the channel.
There is zero flow normal to the impermeable layers D and across the boundaries
C4 and C5. Also the derivatives ∂Θ/∂X and ∂Θ/∂Z vanish as X2 + Z2 → ∞.

3. Fundamental Equations

The relationship between the hydraulic conductivity K(h) of unsaturated soil and
the hydraulic conductivity Ks of saturated soil is taken in the exponential form
(see Gardner [13] )

K(h) = Ks exp(αh), (1)

where h is the soil water potential and α is an empirical constant that provides a
measure of the relative significance of gravity and capillarity for water movement
in the soil (see Philip [3] ). The matric flux potential Θ is related to the hydraulic
conductivity by the equation

Θ =

∫ h

−∞

K(q)dq = α−1K(h). (2)

The linearized form of the steady infiltration equation is

∂2Θ

∂X2
+

∂2Θ

∂Z2
= α

∂Θ

∂Z
. (3)

The horizontal and vertical components of the flux, as functions of the matric flux
potential are

U = − ∂Θ

∂X
, (4)

V = αΘ − ∂Θ

∂Z
. (5)
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The flux normal to a surface with outward pointing normal n = (n1, n2) is given
by

F = − ∂Θ

∂X
n1 + (αΘ − ∂Θ

∂Z
)n2. (6)

In terms of the dimensionless variables

θ =
1

V0L
Θ, x =

α

2
X, z =

α

2
Z,

u =
2

V0αL
U, v =

2

V0αL
V, f =

2

V0αL
F. (7)

where V0 is a reference flux, equations (3) to (6) may be written in the dimension-
less form

∂2θ

∂x2
+

∂2θ

∂z2
= 2

∂θ

∂z
, (8)

u = − ∂θ

∂x
, (9)

v = 2θ − ∂θ

∂z
, (10)

f = − ∂θ

∂x
n1 + (2θ − ∂θ

∂z
)n2. (11)

The transformation
θ = exp (z)Ψ (12)

transforms equation (8) to the equation

∂2Ψ

∂x2
+

∂2Ψ

∂z2
− Ψ = 0. (13)

Also equations (9) to (11) transform to

u = − exp (z)
∂Ψ

∂x
, (14)

v = exp (z)(Ψ − ∂Ψ

∂z
), (15)

f = − exp (z)

[

∂Ψ

∂x
n1 − (Ψ − ∂Ψ

∂z
)n2

]

= − exp (z)

[

∂Ψ

∂n
− Ψn2

]

. (16)

Hence
∂Ψ

∂n
= Ψn2 − e−zf. (17)

Since the geometry of the problem in Figure 1 is symmetrical about X = ±m(a+b)
for m = 0, 1, 2, 3, · · · the boundary value problem need only be solved for the region
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−(a + b) < X < (a + b) with the following boundary conditions.
There is no flow across C1 and C3 (see Figure 1) so that from equation (15)

Ψ − ∂Ψ

∂z
= 0 for z = 0 and aα/2 < |x| < (a + b)α/2. (18)

Over the surface of the channel the normal flow is

−
[

∂Ψ

∂x
n1 − (Ψ − ∂Ψ

∂z
)n2

]

= exp(−z)f0(x, z) for (x, z) ε C2, (19)

where f0(x, z) is given. There is no flow across C4 and C5 so that from equation
(14)

∂Ψ

∂x
= 0 for z > 0 and x = ±(a + b)α/2. (20)

Also there is no flow across the impermeable layers so if n
(j) = (n

(j)
1 , n

(j)
2 ) denotes

the normal to the jth impermeable layer then for (x, z) on the jth impermeable
layer (17) provides

n
(j)
2 Ψ(ξ, η) − ∂Ψ

∂n(j)
= 0 for j = 1, 2, . . . (21)

The derivatives ∂Θ/∂x and ∂Θ/∂z are both zero for z = ∞ and 0 < |x| <
(a + b)α/2. Hence using (7) and (12) the corresponding conditions on Ψ are

∂Ψ

∂x
= 0 and

∂Ψ

∂z
= −Ψ for z = ∞ and 0 < |x| < (a + b)α/2. (22)

4. Boundary Integral Equation

The boundary integral equation for a solution to equation (13) is given by Ω in
R2 with

λΨ(ξ, η) = −
∫

∂Ω

[

∂Ψ

∂n
φ′ − ∂φ′

∂n
Ψ

]

dS, (23)

where n= (n1, n2) is the outward pointing normal to Ω, λ = 1 if (ξ, η) ∈ Ω and
λ = 1/2 if (ξ, η) ∈ ∂Ω and ∂Ω has a continuously turning tangent at (ξ, η). The
φ′ in equation (23) is the fundamental solution of (13) given by

φ′(x, z; ξ, η) = − 1

2π
K0(r). (24)

where r = ((x − ξ)2 + (z − η)2)
1
2 and K0 is the modified Bessel function of order

zero.
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Substitution of (17) into (23) gives

λΨ(ξ, η) = −
∫

∂Ω

[(

φ′n2 −
∂φ′

∂n

)

Ψ − fe−zφ′

]

dS. (25)

An alternative boundary integral equation formulation which directly relates the
potential θ and the flux f may be obtained as follows. From equation (12)

Ψ(x, z) = e−zθ(x, z). (26)

Let
φ′′(x, z; ξ, η) = eη−zφ′(x, z; ξ, η). (27)

Then in terms of θ and φ′′ the integral equation (25) becomes

λθ =

∫

∂Ω

[

∂φ′′

∂n
θ + fφ′′

]

dS. (28)

5. Solution of the Problem

Equation (25) may be written in the form

λΨ(ξ, η) = −
∫

C∪D

[P (x, z)φ′(x, z; ξ, η)

−Λ(x, z; ξ, η; n1, n2)Ψ(x, z)] dS(x, z), (29)

where C is the outer boundary of the body and D denotes the surfaces of the
impermeable layers and

P (x, z) = n2Ψ − fe−z, (30)

φ′(x, z; ξ, η) = − 1

2π
K0(r), (31)

Λ(x, z; ξ, η; n1, n2) =
∂φ′

∂x
n1 +

∂φ′

∂z
n2

=
[(x − ξ)n1 + (z − η)n2]

2πr
K1(r), (32)

where K1(r) is the modified Bessel function of order 1. The outer boundary C in
equation (29) is the union of all Cs where s = 1, 2, · · · 6 and C6 is the plane z = k
where k is constant.

On the ith impermeable layer the coordinates x and z may be written in terms of
a single parameter t in the form

x = X(i)(t) = [(c(i) − a(i))t + (c(i) + a(i))]/2 for t ∈ [−1, 1], (33)

z = Z(i)(t) = [(d(i) − b(i))t + (b(i) + d(i))]/2 for t ∈ [−1, 1]. (34)
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Thus equation (29) may be written in the form

λΨ(ξ, η) = −
∫

C

[P (x, z)φ′(x, z; ξ, η) − Λ(x, z; ξ, η; n1, n2)Ψ(x, z)]dS(x, z)

+

N
∑

i=1

L(i)

2

∫ 1

−1

[Λ(X(i)(t), Z(i)(t); ξ, η; n
(i)
1 , n

(i)
2 )

−n
(i)
2 φ′(X(i)(t), Z(i)(t); ξ, η)]∆w(i)(t)dt, (35)

where L(i) is the length of the ith impermeable layer, (n
(i)
1 , n

(i)
2 ) =

([d(i) − b(i)]/L(i),−[c(i) − a(i)]/L(i)) and ∆w(i)(t) = Ψ(X(i)(t), Z(i)(t)+) −
Ψ(X(i)(t), Z(i)(t)−) gives the jump in Ψ across the opposite faces of the ith im-
permeable layer.

It is convenient at this point to define Φ and Ω as follows.

Φ(i)(x, z; ξ, η; n
(i)
1 , n

(i)
2 ) =

∂φ′

∂n(i)
=

∂φ′

∂ξ
n

(i)
1 +

∂φ′

∂η
n

(i)
2

= −

[

(x − ξ)n
(i)
1 + (z − η)n

(i)
2

]

2πr
K1(r), (36)

Ω(i)(x, z; ξ, η; n1, n2; n
(i)
1 , n

(i)
2 ) =

∂Λ

∂n(i)
=

∂Λ

∂ξ
n

(i)
1 +

∂Λ

∂η
n

(i)
2

= − 1

2πr
[n1n

(i)
1 + n2n

(i)
2 ] K1(r)

+
[(x − ξ)n1 + (z − η)n2]

[

(x − ξ)n
(i)
1 + (z − η)n

(i)
2

]

2πr3
[2K1(r) + rK0(r)]. (37)

Now as (ξ, η) approaches the ith impermeable layer the integral over this imperme-
able layer in (35) must be interpreted as a Cauchy principal value integral. Hence
differentiation of this integral (with respect to either ξ or η) as (ξ, η) approaches
the impermeable layer leads to a Hadamard finite-part integral.

On the jth impermeable layer the coordinates ξ and η may be written in terms of
a single parameter s in the form

ξ = X(j)(s) = [(c(j) − a(j))s + (c(j) + a(j))]/2 for s ∈ [−1, 1], (38)

η = Z(j)(s) = [(d(j) − b(j))s + (b(j) + d(j))]/2 for s ∈ [−1, 1]. (39)

Thus using equations (35) the zero flux condition (21) on the jth impermeable

D.L. Clements et al. / Electronic Journal of Boundary Elements, Vol. 5, No. 1, pp. 1-16 (2007)

7



layer may be expressed as

λ

[

n
(j)
2 Ψ(ξ, η) − ∂Ψ

∂n(j)

]

= −n
(j)
2

∫

C

[P (x, z)φ′(x, z; ξ, η) − Λ(x, z; ξ, η; n1, n2)Ψ(x, z)]dS(x, z)

+n
(j)
2

N
∑

i=1

L(i)

2

∫ 1

−1

[Λ(X(i)(t), Z(i)(t); ξ, η; n
(i)
1 , n

(i)
2 )

−n
(i)
2 φ′(X(i)(t), Z(i)(t); ξ, η)]∆w(i)(t)dt

+

∫

C

[P (x, z)Φ(j)(x, z; ξ, η; n
(j)
1 , n

(j)
2 )

−Ω(j)(x, z; ξ, η; n1, n2; n
(j)
1 , n

(j)
2 )Ψ(x, z)]dS(x, z)

−
N

∑

i=1

L(i)

2

∫ 1

−1

[Ω(j)(X(i)(t), Z(i)(t); ξ, η; n
(i)
1 , n

(i)
2 ; n

(j)
1 , n

(j)
2 )

−n
(i)
2 Φ(j)(X(i)(t), Z(i)(t); ξ, η; n

(j)
1 , n

(j)
2 )]∆w(i)(t)dt

= 0. (40)

If (ξ, η) is on L(j) then on the L(j)th impermeable layer it follows from (33), (34),
(38) and (39) together with the expressions for the normal components on the
layer that

Λ(X(j)(t), Z(j)(t); X(j)(s), Z(j)(s); n
(j)
1 , n

(j)
2 ) = 0, (41)

Φ(j)(X(j)(t), Z(j)(t); X(j)(s), Z(j)(s); n
(j)
1 , n

(j)
2 ) = 0, (42)

Ω(j)(X(j)(t), Z(j)(t); X(j)(s), Z(j)(s); n
(j)
1 , n

(j)
2 ; n

(j)
1 , n

(j)
2 ) = − 1

2πr
K1(r)

=
−1

2π

[

1

r2
+

1

2
ln r − R(r)

]

, (43)

where the formulas [9.8.3] and [9.8.7] in Abramowitz and Stegun [14] may be used
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to obtain R(r) in the form

R(r) = −1/2 log(2) + log(r/2)r2

[

0.87890594

(

1

3.752

)

+ 0.51498869

(

1

3.754

)

r2 + 0.15084934

(

1

3.756

)

r4

+ 0.02658733

(

1

3.758

)

r6 + 0.00301532

(

1

3.7510

)

r8

+ 0.00032411

(

1

3.7512

)

r10

]

+ 0.15443144(1/4)− 0.67278579(r2/16)

− 0.18156897(r4/32)− 0.01919402(r6/64) − 0.00110404(r8/128)

− 0.00004686(r10/256), where 0 < r ≤ 2 (44)

Hence if (ξ, η) is on L(j) then equation (40) may be written in the form

− n
(j)
2

∫

C

[P (x)φ′(x;X(j)(s)) − Λ(x;X(j)(s);n)Ψ(x)]dS(x)

+ n
(j)
2

∑

i6=j

L(i)

2

∫ 1

−1

[Λ(X(i)(t);X(j)(s);n(i))

−n
(i)
2 φ′(X(i)(t);x0)]∆w(i)(t)dt

− (n
(j)
2 )2

L(j)

2

∫ 1

−1

[φ′(X(j)(t);X(j)(s))]∆w(j)(t)dt

+

∫

C

[P (x)Φ(j)(x;X(j)(s);n(j))

−Ω(j)(x;X(j)(s);n;n(j))Ψ(x)]dS(x)

−
∑

i6=j

L(i)

2

∫ 1

−1

[Ω(j)(X(i)(t);X(j)(s);n(i);n(j))

−n
(i)
2 Φ(j)(X(i)(t);X(j)(s);n(j))]∆w(i)(t)dt

+
1

πL(j)
H

∫ 1

−1

∆w(j)(t)

(t − s)2
dt +

L(j)

8π

∫ 1

−1

log(
L(j)

2
|t − s|)∆w(j)(t)dt

−L(j)

4π

∫ 1

−1

R(
L(j)

2
|t − s|)∆w(j)(t)dt

= 0, for − 1 < s < 1, (45)

where H denotes the Hadamard finite-part integral and

x = (x, z), x0 = (η, ζ), X
(i) = (X(i), Z(i)).
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The boundary integral equations (35) and (45) form the basis of a boundary ele-
ment procedure for the solution of the boundary value problem.

Let

∆w(i)(t) '
√

1 − t2
J(i)
∑

k=1

α
(i)
k Uk−1(t) (46)

where Uk(t) denotes the Chebyshev polynomial of the second kind and the α
(i)
k

for i=1. . . N and k=1. . . J (i) are unknown constants.

The boundary C is approximated by M straight line segments C(q) (q=1,2. . .M)
of equal length so that

C ' C(1) ∪ C(2) ∪ · · · ∪ C(M),

On the qth segment the functions Ψ and f are taken to be constant so that

Ψ ' Ψ(q) constant over C(q), f ' f (q) constant over C(q)

Letting (ξ(m), η(m)) be the midpoint of Cm, the equation (35) may be approximated
by

λΨ(m) =

M
∑

q=1

{

f (q)

∫

C(q)

e−zφ′(x;x0
(m))dS(x)

+Ψ(q)

∫

C(q)

[Λ(x;x0
(m);n) − n2φ

′(x;x0
(m))]dS(x)

}

+

N
∑

i=1

L(i)

2

J(i)
∑

k=1

α
(i)
k

∫ 1

−1

[Λ(X(i)(t);x0
(m);n(i))

−n
(i)
2 φ′(X(i)(t);x0

(m))]Uk−1(t)
√

1 − t2dt,

for m = 1, 2, . . . , M. (47)

The discretised formulation of equation (45) can be obtained in a similar manner.
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Replacing P (x, z) with n2Ψ − fe−z then equation (45) can be approximated by

M
∑

q=1

{

f (q)

∫

C(q)

e−z[n
(j)
2 φ′(x;X(j)(s)) − Φ(j)(x;X(j)(s);n(j))]dS(x)

+Ψ(q)

∫

C(q)

[n
(j)
2 (Λ(x;X(j)(s);n)

−n2φ
′(x;X(j)(s)) + n2Φ

(j)(x;X(j)(s);n(j))

−Ωj(x;X(j)(s);n;n(j))]dS(x)

}

+n
(j)
2

∑

i6=j

L(i)

2

J(i)
∑

k=1

α
(i)
k

∫ 1

−1

[Λ(X(i)(t);X(j)(s);n(i))

−n
(i)
2 φ′(X(i)(t);X(j)(s)]Uk−1(t)

√

1 − t2dt

−(n
(j)
2 )2

L(j)

2

J(j)
∑

k=1

α
(j)
k

∫ 1

−1

[φ′(X(j)(t);X(j)(s))]Uk−1(t)
√

1 − t2dt

−
∑

i6=j

L(i)

2

J(i)
∑

k=1

α
(i)
k

∫ 1

−1

[Ω(j)(X(i)(t);X(j)(s);n(i);n(j))

−n
(i)
2 Φ(j)(X(i)(t);X(j)(s))]Uk−1(t)

√

1 − t2dt

+
1

πL(j)

J(j)
∑

k=1

α
(j)
k H

∫ 1

−1

Uk−1(t)
√

1 − t2

(t − s)2
dt

+
L(j)

8π

J(j)
∑

k=1

α
(j)
k

∫ 1

−1

log(
L(j)

2
|t − s|)Uk−1(t)

√

1 − t2dt

−L(j)

4π

J(j)
∑

k=1

α
(j)
k

∫ 1

−1

R(
L(j)

2
|t − s|)Uk−1(t)

√

1 − t2dt

= 0, for − 1 < s < 1 and j = 1, 2, . . . , N. (48)

The Hadamard finite-part integral may be evaluated using the formula (see Kaya
and Erdogan [15] )

H
∫ 1

−1

Uk−1(t)
√

1 − t2

(t − s)2
dt = −πkUk−1(s). (49)

For the purpose of numerical calculations the number of constants α
(i)
k is taken to

be the same for each impermeable layer so that J (i) = J say for i = 1, 2, · · · , N.
Hence equation (47) consists of M equations (since m = 1, 2, ..., M) in the M +NJ

unknowns Ψm for m = 1, 2, . . . , M and α
(j)
k for k = 1, 2, . . . , J and j = 1, 2, . . . , N .
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In order to generate the extra NJ equations required to solve the system equation
(48) is employed. Specifically, in (48) J points are taken on each impermeable
layer (for instance setting s = sp = cos([2p − 1]π/[2J ]), (p = 1, 2, ..., J) for each
layer) so that (48) generates a linear system of NJ equations for the unknowns

Ψm for m = 1, 2, . . . , M and α
(j)
k for k = 1, 2, . . . , J and j = 1, 2, . . . , N . Thus

the total number of unknowns NJ + M is equal to the number of linear algebraic
equations and the unknowns can be determined.

6. Numerical Results

In this section numerical results are given for the values of the matric flux potential
associated with infiltration from a semi-circular channel of radius a = 2L/π with
one or more impermeable layers located in various positions in the domain Z >
0, |X | < (a + b) (see Figure 1). The normal flux over the surface of the channel is
chosen to be constant F = −V0. From the definition of the dimensionless variables
in equation (7) and using the value of α given by Philip [3] (that is α = 0.002 cm−1)
and letting the reference length L = 100 cm it follows that αL = 0.2 and therefore

f = f0 =
2

0.2V0
(−F ) = −10.

Also the dimensionless radius a1 of the semi-circular channel is given by

a1 =
α

2
a =

2αL

2π
= 0.2/π.

Thus the total non-dimensional inflow of water through the surface of the semi-
circular channel is given by

πa1f = −2.

This inflow must exactly match the outflow across the boundary C6 which is given
by z = k for |x| < 0.5.

The value of the dimensionless quantity (a + b)α/2 (see Figure 1) was taken to be
0.5 (see Figure 2).

The boundary integral equations (47) and (48) and the transformation in equa-
tion (12) were used to calculate the dimensionless values of θ along the boundary
line x = 0.5. The outer boundary C was divided into segments to facilitate the
replacement of the integrals in (47) and (48) by a sum to form a system of linear
algebraic equations for the unknown function Ψ(a, b).

The results were then transformed to θ(x, z) using the transformation given by
equation (12). The number of segments and the value of k were increased until
convergence of the value of θ(x, z) (to four decimal places) was achieved. To
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x
−0.50.5 −aa 11

Figure 2: Semi-circular strip source with impermeable layer(s) (a1 = 0.2/π)

obtain this level of convergence it was necessary to take the value k = 4 (using the
condition ∂Ψ/∂z = −Ψ on z = 4) and to divide the outer boundary C into 600
segments and also to set J = 6 in equation (48).

Figure 3 illustrates the dimensionless value of the matric flux potential as a func-
tion of dimensionless depth of a single impermeable layer. The values were ob-
tained for a single layer varying in length. In the figure Lq denotes the layer of
length q lying between the coordinates (-q/2, 0.25) and (q/2, 0.25).

The results indicate clearly that the peak increases with the length of the imper-
meable layer. This is to be expected, since the longer the impermeable layer, the
bigger the capillarity effects relative to those from gravity. Consequently more flux
is forced to flow horizontally towards the boundary.

Figure 4 provides the dimensionless value of the matric flux potential for a single
impermeable layer placed at different distances below the soil surface. Lz denotes
the impermeable layer lying between the coordinates (-0.3, z) and (0.3, z). From
the graphs it is apparent that, as the depth of the layer below the surface increases,
the maximum value of the matric flux potential on the line x=0.5 increases but
the maximum occurs further below the soil surface.

D.L. Clements et al. / Electronic Journal of Boundary Elements, Vol. 5, No. 1, pp. 1-16 (2007)

13



0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Matric F lux

Potential θ(0.5, z)

0 0.5 1 1.5 2
Depth z

L0.4

L0.6

L0.8

Figure 3: Values of θ for a single layer varying in length

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

Matric F lux

Potential θ(0.5, z)

Depth z

L0.25

L0.45

L1.00

Figure 4: Values of θ for a single layer varying in depth

The effect of increasing the number of impermeable layers on the matric flux
potential is illustrated in Figure 5. In the figure L1 provides the matric flux
potential for a single layer lying between (-0.3, 0.25) and (0.3, 0.25), L2 provides
the potential for two layers with the first layer lying between (-0.3, 0.25) and
(0.3, 0.25) and second layer lying between (-0.3, 1) and (0.3, 1) (see Figure 2b).
L3 provides the potential for three layers with the first layer lying between (-0.3,
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Figure 5: Values of θ for one, two and three layers

0.25) and (0.3, 0.25), the second layer lying between (-0.3, 0.75) and (0.3, 0.75)
and the third layer lying between (-0.3, 1) and (0.3, 1) (see Figure 2c). The graph
indicates how the introduction of the additional impermeable layers provides a
higher sustained level of matric flux potential along the line x=0.5.

7. Summary

A boundary element method for calculating the matric flux potential for infiltra-
tion from periodic irrigation channels in a in homogeneous soil with a finite number
of impermeable layers has been developed. The method has been employed to de-
termine the effect of impermeable layers on the distribution of the matric flux
potential throughout the soil. The results illustrate how the matric flux poten-
tial can be influenced by an increase in the length of an impermeable layer. The
results also indicate how the depth of the impermeable layers can influence the
distribution of the matric flux potential.
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