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Abstract

Direct boundary limit algorithms for evaluating hypersingular Galerkin surface
integrals have been successful in identifying and removing the divergent terms,
leaving finite integrals to be evaluated. This paper is concerned with the numer-
ical computation of these multi-dimensional integrals. The integrands contain a
weakly singular logarithmic term that is difficult to evaluate directly using stan-
dard numerical techniques. Herein it is shown that analytic integration of these
weakly singular terms can be accomlished by suitably re-ordering the parameter
integrals. In addition to improved accuracy, this process also reduces the dimen-
sion of the numerical quadrature, and hence improves efficiency.

1 Introduction

This paper is a continuation of the work in [14] on the direct evaluation of Galerkin
hypersingular boundary integrals in three dimensions. In a Galerkin formulation
[3, 5], the boundary integral equation involves a double integration over the bound-
ary, and in a numerical approximation, the individual integrals to be computed
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take the form
∫

EP

ψk(P )

∫

EQ

ψj(Q)K(P,Q) dQ dP . (1)

The kernel function K(P,Q) can be the Green’s function G(P,Q) for the problem
or one of its derivatives, but herein, as in [14], the focus is on the hypersingular
second derivative. The integrations are over two elements, EP and EQ, that
comprise part of the approximation of the boundary surface, and the functions
ψj(Q) in Eq. (1) are the chosen shape functions that define the approximations
on the boundary (e.g., linear, quadratic). These functions are then normally used
as the Galerkin weight functions ψk(P ) for the outer integration.

The term direct applied to the evaluation methods presented in [14] has two mean-
ings. First, in contrast to the most commonly employed technique based upon
Stokes’ Theorem [9, 19], there is no reformulation of the integrand in Eq. (1).
Second, the individual integrals when EP = EQ (coincident) or when EP and EQ

share an edge (edge-adjacent) are divergent, and a direct method will explicitly
compute the divergent terms. This is in contrast to methods based upon the well
known Hadamard Finite Part definition [18, 20], for which the divergences dis-
appear through the application of this definition [1, 2, 21, 22, 8, 23]. In either
approach, numerical evaluation has been successfully carried out using a Duffy
transformation [12] to help mollify the singularities; herein, analytic treatment
of the singularties will leave, for the numerical work, integrals that can be easily
handled by standard Gauss quadrature.

Herein, as in [14], the integrals are defined and evaluated as a boundary limit

lim
ǫ→0

∫

EP

ψk(P )

∫

EQ

ψj(Q)K(Pǫ, Q) dQ dP , (2)

where Pǫ denotes points exterior to the volume that converge to the boundary point
P ∈ EP as ǫ tends to zero. For two dimensional analysis, an alternative direct
formulation method (employing a different limit process) has been presented in [4]
(see also [10, 17]); in a collocation approximation, this method has also been shown
to be successful in handling singularities beyond hypersingular [11]. Similarly, [16]
presents an efficient and accurate direct Galerkin method for post-processing the
surface gradient.

The previous work [14] established main two results. First, as noted above, the
individual coincident and edge-adjacent edge hypersingular integrals are sepa-
rately divergent: if the boundary limit is accomplished by setting Pǫ = P + ǫN,
N = N(P ) the unit outward normal at P , then for ǫ → 0, the edge and coinci-
dent integrals behave as log(ǫ2). Second, the complete boundary integration of
the hypersingular kernel is finite, as all divergent terms can be shown to cancel
when the total integral is assembled. This analysis was accomplished by eval-
uating the four-dimensional parameter space integral partially analytically. For
the coincident computation, two dimensions were integrated analytically, leaving
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a finite double integral. For the adjacent edge, the remaining finite integral was
three-dimensional. The exact integration explicitly indentified the log(ǫ2) term,
and at the same time, the remainder of the analytic expression was seen to be
finite at ǫ = 0 and integrable with respect to the remaining parameters. With the
divergent terms identified and removed exactly, the calculation can proceed with
well defined finite integrals.

This paper is concerned with the last stage of this singular integration program,
the evaluation of the finite integrals that remain after the boundary limit, ǫ = 0,
has been completed. The difficulty at this point is that the same terms that
gave rise to the divergent log(ǫ2) expressions also produce integrands containing
an integrable logarithmic singularity. The simplest approach would be to invoke
well-known Gauss rules for handling this weakly singular function [6]. However, in
the present circumstances, this method would be difficult to apply: the singularity
does not appear in a simple form that allows easy implementation of this numerical
technique.

It will be shown that this problem can be remedied by integrating the logarithmic
singularity analytically. However, this exact integration cannot be immediately
implemented, for the same reason that use of the special Gauss rule is difficult:
the logarithmic singularity stems from the last parameter to be integrated in the
multi-dimensional parameter integrals. The key step is therefore to re-order the
integrations, and this process is described herein. Once the re-ordering is accom-
plished, numerical methods could be invoked; however at this point the innermost
integral is simple enough to be computed analytically. There is nothing especially
difficult in the manipulation of the integrals – it is simply elementary calculus.
However, this re-ordering is key: a standard Gauss quadrature evaluation of the
finite integrals in their original form performs quite poorly. As shown below, this
calculation in general fails to converge even at 24 Gauss points, whereas the ana-
lytic approach has converged at 8 points.

Although the most important objective must be to obtain a reliable evaluation of
the hypersingular integrals, the new algorithms also improve efficiency. Instead
of two and three dimensional integrals, the numerical quadrature is reduced to
one and two dimensions, and, as just noted, far fewer Gauss points are required.
Thus, these methods can also be profitably applied to for the less singular kernel
functions, the Green’s function and its first derivative, even though the problematic
logarithm function does not appear.

As in [14], the algorithms will be presented in the context of a linear element. We
wish to emphasize, however, that the techniques are not limited to this situation.
For higher order interpolation, the basic idea is to split the integrand into a non-
singular part that can be safely evaluated numerically, plus a singular component
that is subject to analytic integration and limit evaluation. This singular term is
constructed so as to have the same form as in the linear interpolation, and this
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is the reason that it suffices to examine the linear case. For two dimensions, the
splitting into singular and nonsingular components has been described in [13], and
the procedures in three dimensions are essentially the same.

The following section provides a brief summary of the methods developed in [14],
sufficient for a discussion of the new follow-on algorithms. More complete details
can of course be found in this reference. The subsequent two sections then discuss
the treatment of the coincident and adjacent edge hypersingular integrations, re-
spectively. The effectiveness of these algorithms is established by results from test
calculations presented in section 5.

2 Boundary Limit Evaluation

As just noted, the purpose of this section is to review, as briefly as possible, the
formulation in [14]. The integration methods are applicable to all singular integrals
commonly employed in boundary integral analysis, namely G and its first and
second derivatives, incorporating most, if not all, Green’s functions. However, for
purposes of discussion, it is convenient to employ the terminology and notation of
the Laplace equation, ∇2φ = 0. The Green’s function is the point source potential

G(P,Q) =
1

4πr
=

1

4π

1

‖Q− P‖ , (3)

and thus the hypersingular kernel is

K(P,Q) =
∂2G

∂N∂n
(P,Q) =

1

4π

(

n•N

r3
− 3

(n•R)(N •R)

r5

)

. (4)

Here R = Q − P , r = ‖Q − P‖ and n = n(Q), N = N(P ) is the unit outward
normal on the boundary. The integrals involving G and its first order derivative
lead to simpler integrals that can be handled by the same methods.

As noted in [14], it suffices to consider a linear element, as these techniques form
the basis for treating higher order interpolations. We choose to work with a 3-
noded triangular element, the approximations to the boundary and the boundary
functions are defined using an equilateral triangle parameter space {η, ξ}, −1 ≤
η ≤ 1, 0 ≤ ξ ≤

√
3(1− |η|). The three linear shape functions ψj(η, ξ) are given by

ψ1(η, ξ) =

√
3(1 − η) − ξ

2
√

3

ψ2(η, ξ) =

√
3(1 + η) − ξ

2
√

3
(5)

ψ3(η, ξ) =
ξ√
3
.
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The parametric variables for the outer P integration will be denoted by (η, ξ), and
that forQ by (η∗, ξ∗). Thus, for an element defined by nodal points {Qj = (xj , yj , zj)},
the mapping from parameter space to the approximate boundary surface is

Q(η∗, ξ∗) =

3
∑

j=1

(xj , yj , zj)ψj(η
∗, ξ∗) . (6)

In Eq. (1) ψj(η
∗, ξ∗) appears due to the representation of the coefficient function

(in this case, the surface potential φ(Q)) in terms of nodal values and the shape
functions. The function ψk(η, ξ) is the weight function in the Galerkin formulation
of the integral equation.

2.1 Coincident integral

For EP = EQ = E, the coincident integral to be evaluated is

J2
P

∫ 1

−1

∫ ξ(η)

0

ψk(η, ξ) dξ dη

∫ 1

−1

∫ ξ(η∗)

0

ψj(η
∗, ξ∗)

∂2G

∂N∂n
(P,Q) dξ∗ dη∗ , (7)

where E is defined by nodes Pk, 1 ≤ k ≤ 3, JP (= JQ) is the (constant) jacobian
for the element E and ξ(η) =

√
3(1 − |η|). For the inner Q integration, the first

step is to define a polar coordinate system centered at P = (η, ξ),

η∗ − η = ρ cos(θ) (8)

ξ∗ − ξ = ρ sin(θ)

as illustrated in Fig. 1.

The expression for the upper limit of ρ, 0 < ρ < ρL(θ), is different as θ traverses
each edge, and thus the (ρ, θ) integration must be split into three subtriangles.
Again, as discussed in [14], it suffices to carry out the calculation for the lower
subtriangle associated with the edge ξ∗ = 0. In this case, the integration limits
are ρL = −ξ/ sin(θ) and Θ1 ≤ θ ≤ Θ2 where

Θ1 = −π
2
− tan−1(

1 + η

ξ
) (9)

Θ2 = −π
2

+ tan−1(
1 − η

ξ
) .

With P replaced by P + ǫN for the exterior limit, the distance function takes the
simple form

r2(ρ, θ) = ǫ2 + a2(θ)ρ2 , (10)

where
a2(θ) = acc cos2(θ) + acs cos(θ) sin(θ) + ass sin2(θ) . (11)
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ξξ∗∗

ηη∗∗

θθ

ρρ

((ηη, , ξ)ξ)

-1 1t

Figure 1: First polar coordinate transformation, {η∗, ξ∗} → {ρ, θ}, for the coinci-
dent integration. The variable t eventually replaces θ.

The three coefficients aαβ , α, β = c, s depend solely on the coordinates of the
element nodes. With Eq. (8), the shape functions ψj(Q) are linear functions of ρ,
and thus the integral with respect to ρ from 0 to ρL(θ) is easily evaluated. After
this integration, the most singular integral becomes

− 1

4π

∫ 1

−1

dη

∫ ξ(η)

0

ψk(η, ξ) dξ

∫ Θ2

Θ1

ρ2
L

( ǫ2 + a2 ρ2
L )3/2

dθ , (12)

and as ρL can become small for ξ ≈ 0, this expression is still singular at ǫ = 0.
As the dependence of the integrand on θ is harmless, the ξ and θ integrations are
interchanged by introducing the variable t, −1 ≤ t ≤ 1,

θ = −π
2

+ tan−1(
t− η

ξ
) , (13)

in which case ρL =
(

ξ2 + (t− η)2
)1/2

. As indicated in Figure 1, t is the ‘end-point’
(t, 0) of ρ on the η∗-axis, and the singularity is at t = η, ξ = 0. Moving the ξ
integration forward in Eq. (12), and introducing a second polar coordinate system
{Λ,Ψ}

t = Λ cos(Ψ) + η

ξ = Λ sin(Ψ) , (14)
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to replace {t, ξ}, Eq. (12) results in integrals of the form

∫ 1

−1

dη

∫ Ψl+1

Ψl

sin(Ψ) dΨ

∫ ΛL

0

Λs Λ2

(ǫ2 + a2 Λ2)
3/2

dΛ . (15)

where
ΛL =

√
3(1 + η)/ sin(Ψ) . (16)

The powers of Λ, s = 0, 1, 2, stem from the product of the Q and P shape functions,
and the sin(Ψ) from the change of variables. The Λ integral can be evaluated
analytically, with the s = 0 integral producing the terms of interest: a log(ǫ2)
divergent term, plus a term of the form log(a2Λ2

L). Note that the {t, ξ} domain,
Fig. 2, is a rectangle, and integrating over {Λ,Ψ} will necessitate a decomposition
into three subdomains Ψl ≤ Ψ ≤ Ψl+1, where Ψ0 = 0, Ψ3 = π and

Ψ1 = tan−1 (ξ(η)/(1 − η)) Ψ2 = π − tan−1 (ξ(η)/(1 + η)) (17)

Most importantly ΛL → 0 for η → ±1, and it is the presence of the weakly

Figure 2: Geometry of the second polar coordinate transformation, {t, ξ} →
{Λ,Ψ}, for the coincident integration.

singular log(a2Λ2
L) term that complicates the numerical evaluation.

It is tempting, as this would be the simplest approach, to try to evaluate this
logarithm integral by employing the effective numerical methods [6] designed to
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handle an integral of the form

∫ 1

0

f(x) log(x) dx . (18)

However, as noted in the Introduction, these methods would be somewhat awkward
to apply here. In the first place, ΛL = ΛL(η,Ψ) and while the vanishing of
ΛL is primarily a function of η → ±1, it also depends upon Ψ. For discussion
purposes consider η ≈ −1, and note that the width of the rectangle in Fig. 2
approaches zero. Also, Ψ1 → 0, Ψ2 → 2π/3, and in the middle triangle in Fig.
2, Ψ1 < Ψ < Ψ2. To apply the numerical integration, it is necessary to split the
logarithm as

log(a2Λ2
L) = log

(

3a2

sin2(Ψ)

)

+ 2 log(1 + η) (19)

to isolate the singularity at η = −1 in the appropriate form of Eq. (18). How-
ever, this requires yet another splitting of the integral, as it would be necessary to
avoid the situation sin(Ψ) ≈ 0. Thus, repeating the comment above, the logarith-
mic singularity is a function of both η and Ψ, and attempts to separate the two
parameters in the definition of ΛL appears to create additional problems.

Second, there is more to the integral over {η,Ψ} than the logarithm term, and thus
this component would be handled differently than the rest of the integral. In the
algorithm presented below, the {η,Ψ} integral is treated as a whole, the singularity
is handled analytically, and the numerical integration is one dimensional instead
of two. This will however require a further decomposition into cases, but on the
whole appears to be simpler and to offer significant advantages over a completely
numerical treatment.

2.2 Edge Adjacent Integration

As the edge adjacent integral produces the counterbalancing log(ǫ2) divergent
term, it is also to be expected that it produces a finite logarithm integral as well.
To begin, orient the elements so that the shared edge is defined by ξ = 0 in
EP , and ξ∗ = 0 for EQ, and the singularity P = Q is therefore characterized by
η + η∗ = ξ = ξ∗ = 0. Employ polar coordinates for the Q integration,

η∗ = ρ cos(θ) − η (20)

ξ∗ = ρ sin(θ)

and as shown in Fig. 3(a), the θ integration must be split into two pieces

∫ 1

−1

dη

∫

√
3(1−|η|)

0

dξ

[

∫ Θ1(η)

0

dθ

∫ L+

1

0

ρ dρ+

∫ π

Θ1(η)

dθ

∫ L−

1

0

ρ dρ

]

, (21)
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where L±
1 =

√
3(1 ± η)/

(

sin(θ) ±
√

3 cos(θ)
)

. For simplicity the integrands have
been omitted, but it will be useful to retain the jacobians of the various transfor-
mations.

θ1

η
-1 1η-

(a)

ψ1

0 L1(θ)
0

ξξ

( )||13 η−

ρρ

(b)

Figure 3: (a) Polar coordinate transformation employed in the Q element,
{η∗, ξ∗} → {ρ, θ}; (b) Second polar coordinate transformation {ρ, ξ} → {Λ,Ψ}
for the edge-adjacent integration.

The key observation is that the break-point in θ,

θ1(η) =
π

2
− tan−1

(

η√
3

)

(22)

is only a function of η. the integrations can therefore be rearranged,

∫ 1

−1

dη

∫ Θ1(η)

0

dθ

∫

√
3(1−|η|)

0

dξ

∫ L+

1

0

ρ dρ+ (23)

∫ 1

−1

dη

∫ π

Θ1(η)

dθ

∫

√
3(1−|η|)

0

dξ

∫ L−

1

0

ρ dρ .

As the singularity occurs when ρ = ξ = 0, it makes sense to now introduce a
second polar coordinate transformation

ρ = Λ cos(Ψ) (24)

ξ = Λ sin(Ψ) ,
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as shown in Fig. 3(b). Note that Λ = 0 encapsulates all three conditions for r = 0,
namely ξ = ξ∗ = 0, η = −η∗, and thus the analytic integration over Λ will suffice
to produce the log(ǫ2) term [14]. It also produces a finite integral of the form

∫ 1

−1

dη

∫ Θl+1

Θl

dθ

∫ Ψm+1

Ψm

A(η, θ,Ψ)dΨ (25)

where l,m = 0, 1, and Θ0 = 0, Θ2 = π, Ψ0 = 0, Ψ2 = π/2 . The problem
is that once again A contains a logarithm function that is weakly singular for
η → ±1, (respectively) L∓

1 → 0 (Fig. 3). As the angle integrals cannot be executed
analytically, it will therefore be necessary to arrange for the η integration to be
innermost of the three.

3 Re-ordering: Coincident

Recall that the coincident integral has been reduced to an integration over {η,Ψ},
with the Ψ integral decomposed into three subintegrals and the weak singularity
at η = ±1. The goal is to re-order the integrals and integrate η analytically,
and thus each subintegral has to be examined separately. It is also necessary to
treat the weak singularities η = 1 and η = −1 separately, which is conveniently
accomplished by splitting the η integral as −1 < η < 0 and 0 < η < 1.

Our goal here is to describe the re-ordering procedures, and thus in what follows
we omit the integrands and the details of the simple integration with respect to η.

3.1 η ≥ 0

In this case, the subdivision of the Ψ integral and the limits of the Λ integration
are

0 ≤ Ψ ≤ π
3 ΛL = (1 − η)/ cos(Ψ)

π
3 ≤ Ψ ≤ Ψη ΛL =

√
3(1 − η)/ sin(Ψ)

Ψη ≤ Ψ ≤ π ΛL = −(1 + η)/ cos(Ψ)
(26)

where
Ψη ≡ Ψ2 = π − tan−1(

√
3(1 − η)/(1 + η)) . (27)

The domain of integration is shown in Fig. 4. Interchanging the order of integra-
tion, and subsequently evaluating the η integral analytically, is a relatively simple
process. The three Ψ integrals become

∫ 1

0

dη

∫ π/3

0

dΨ =

∫ π/3

0

dΨ

∫ 1

0

dη =

∫ π/3

0

Φa
k,jdΨ
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Figure 4: The {η,Ψ} domain for η > 0.

∫ 1

0

dη

∫ Ψ2

π/3

dΨ =

∫ 2π/3

π/3

dΨ

∫ 1

0

dη +

∫ π

2π/3

dΨ

∫ 1

α

dη

=

∫ 2π/3

π/3

Φb
k,jdΨ +

∫ π

2π/3

Φc
k,jdΨ (28)

∫ 1

0

dη

∫ π

Ψ2

dΨ =

∫ π

2π/3

dΨ

∫ α

0

dη =

∫ π

2π/3

Φd
k,jdΨ

where α is obtained by inverting the formula for Ψη,

α =
1 − β

1 + β
β = tan(π − Ψ)/

√
3 (29)

The Φa−d
k,j functions, the result of the η analytic integration, are integrated numer-

ically with respect to Ψ.
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3.2 η ≤ 0

Not surprisingly, the procedures for η ≤ 0 are essentially the same as above. The
subdivision of the Ψ integral is

0 ≤ Ψ ≤ Ψη ΛL = (1 − η)/ cos(Ψ)

Ψη ≤ Ψ ≤ 2π/3 ΛL =
√

3(1 − η)/ sin(Ψ)
2π/3 ≤ Ψ ≤ π ΛL = −(1 + η)/ cos(Ψ)

(30)

where now Ψη = tan−1(
√

3(1 + η)/(1 − η)), and the new {η,Ψ} domain is shown
in Fig. 5. Interchanging the order of integration and integrating η analytically as
before,

Figure 5: The {η,Ψ} domain for η < 0.

∫ 0

−1

dη

∫ Ψη

0

dΨ =

∫ π/3

0

dΨ

∫ 0

α

dη =

∫ π/3

0

Φe
k,j dΨ

∫ 0

−1

dη

∫ 2π/3

Ψη

dΨ =

∫ π/3

0

dΨ

∫ α

−1

dη +

∫ 2π/3

π/3

dΨ

∫ 0

−1

dη

=

∫ 2π/3

0

Φf dΨ +

∫ 2π/3

π/3

Φg
k,j dΨ (31)
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∫ 0

−1

dη

∫ π

2π/3

dΨ =

∫ π

2π/3

dΨ

∫ 0

−1

dη =

∫ π

2π/3

Φh
k,j dΨ

where now

α = −1 − β

1 + β
β = tan(Ψ)/

√
3 . (32)

4 Re-ordering: Adjacent Edge

As shown in [14] and indicated by Eq. (25), isolating the divergent term in the
adjacent edge integral only requires a single analytic integration. The subsequent
integral over η and the angles θ and Ψ from the polar coordinate transformations
is finite. However, to treat the weak logarithmic singularity, we once again wish
to integrate η analytically, and this will require two interchanges. As with the
coincident integral, the singularity is at η = ±1, and it is convenient to consider η
positive and negative separately. In the following we examine η ≥ 0, the remaining
case is similar. Moreover, in the implementation of this method, η ≥ 0 suffices:
η ≤ 0 can be computed by ‘flipping’ the elements around and using the η ≥ 0
formulas; this is analogous to the rotation procedure employed for the coincident
integration.

The further complication in the edge adjacent case is that, as shown in Fig. 3,
both the θ and Ψ integrals are in two pieces. In particular, the splitting in θ is
0 ≤ θ ≤ θη and θη ≤ θ ≤ π, and θη is defined in Eq. (22).

4.1 θη ≤ θ ≤ π

For this subtriangle, the splitting of Ψ integral is independent of η, and thus this
is the simpler of the two cases. The two integrals are

∫ 1

0

dη

∫ π

θη

dθ

∫ Ψ1

0

dΨ +

∫ 1

0

dη

∫ π

θη

dθ

∫ π/2

Ψ1

dΨ (33)

where the upper limit on Λ, ΛL, is different in the two terms (see Fig. 3),

ΛL =

{

L1(θ)/ cos(Ψ) 0 < Ψ < Ψ1

ξ(η)/ sin(Ψ) Ψ1 < Ψ < π/2
(34)

As before ξ(η) =
√

3(1 − |η|), L1(θ) is the upper limit on ρ given below Eq. (21)
(We now drop the superscript ±) and the Ψ integral is split at

Ψ1 = Ψ1(θ) = tan−1 (ξ(η)/L1) = tan−1
(

sin(θ) −
√

3 cos(θ)
)

. (35)
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The important simplification in this case is that Ψ1 is not a function of η. Thus,
once η and θ are interchanged, the η can be moved immediately past the Ψ integral.

Figure 6: The {η, θ} domain for the first shift of the integral, θη ≤ θ ≤ π.

Noting that θη(0) = π/2 and θη(1) = π/3, the geometry for interchanging η and θ
is shown in Fig. 6. Inverting the relationship between η and θ yields

η(θ) =

√
3

tan(θ)
(36)

and switching the integrals results in

∫ π

π/2

dθ

∫ Ψ1

0

dΨ

∫ 1

0

dη +

∫ π/2

π/3

dθ

∫ Ψ1

0

dΨ

∫ 1

η(θ)

dη + (37)

∫ π

π/2

dθ

∫ π/2

Ψ1

dΨ

∫ 1

0

dη +

∫ π/2

π/3

dθ

∫ π/2

Ψ1

dΨ

∫ 1

η(θ)

dη

As before, the η integral is easily evaluated analytically.

L.J. Gray et al. / Electronic Journal of Boundary Elements, Vol. 4, No. 3, pp. 105-130 (2006)

118



4.2 0 < θ ≤ θη

Referring to Fig. 3, we note that as η > 0, the upper limit of ρ, L1(θ) now does
not approach zero. However, the upper limit of Λ, which appears in the logarithm
function, is

ΛL =

{

L1(θ)/ cos(Ψ) 0 < Ψ < Ψ1

ξ(η)/ sin(Ψ) Ψ1 < Ψ < π/2
. (38)

where now L1(θ) is L+
1 given below Eq. (21).

Thus, for η → 1 the rectangle in Fig. 3 will be long and thin, and thus ΛL →
0 when η is close to one and Ψ is near π/2. Thus, as mentioned above, the
appearance of the logarithmic singularity is a complicated function of both η and
Ψ, making an entirely numerical approach to the evaluation of the log integrals
quite complicated.

In this case the breakpoint in Ψ, Ψ1, is a function of η and shifting things around
will now produce seven integrals instead of the above four. The two starting
integrals are

∫ 1

0

dη

∫ θη

0

dθ

∫ Ψ1

0

dΨ +

∫ 1

0

dη

∫ θη

0

dθ

∫ π/2

Ψ1

dΨ (39)

where θη is as before, Eq. (22), but now

Ψ1 = Ψ1(η, θ) = tan−1 (ξ(η)/L1) = tan−1

(

1 − η

1 + η

[

sin(θ) +
√

3 cos(θ)
]

)

(40)

As in the previous section, the θ and η integrals are easily interchanged, the
domain being the region below the θ(η) curve in Fig. 6. This results in the four
integrals

∫ π/3

0

dθ

∫ 1

0

dη

∫ Ψ1

0

dΨ +

∫ π/2

π/3

dθ

∫ η(θ)

0

dη

∫ Ψ1

0

dΨ + (41)

∫ π/3

0

dθ

∫ 1

0

dη

∫ π/2

Ψ1

dΨ +

∫ π/2

π/3

dθ

∫ η(θ)

0

dη

∫ π/2

Ψ1

dΨ

where η(θ) is given in Eq. (36). Using the fact that Ψ1(η = 1, θ) = 0, the geometry
for interchanging η and Ψ is shown in Fig. 7, η(θ) < 1, and in Fig. 8, the region
below the curve for η(θ) = 1. Moving the η integral to the front in the first two
integrals (0 < Ψ < Ψ1) results in

∫ π/3

0

dθ

∫ Ψ00

0

dΨ

∫ Ψη

0

dη+

∫ π/2

π/3

dθ

∫ Ψθ

0

dΨ

∫ η(θ)

0

dη+

∫ π/2

π/3

dθ

∫ Ψ00

Ψθ

dΨ

∫ Ψη

0

dη

(42)
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Figure 7: The domain for interchanging the integrals {η,Ψ}, for a fixed value of θ
and η(θ) < 1.

where

Ψ00 = Ψ1(η = 0) = tan−1
([

sin(θ) +
√

3 cos(θ)
])

Ψθ = Ψ1(η = η(θ), θ) = tan−1

(

1 − η(θ)

1 + η(θ)

[

sin(θ) +
√

3 cos(θ)
]

)

(43)

Ψη =
1 − γ

1 + γ
γ =

tan(Ψ)

sin(θ) +
√

3 cos(θ)

Similarly, the second two integrals in Eq. (41), Ψ1 < Ψ < π/2, become

∫ π/3

0

dθ

∫ Ψ00

0

dΨ

∫ 1

Ψη

dη +

∫ π/3

0

dθ

∫ π/2

Ψ00

dΨ

∫ 1

0

dη + (44)

∫ π/2

π/3

dθ

∫ Ψ00

Ψθ

dΨ

∫ η(θ)

Ψη

dη +

∫ π/2

π/3

dθ

∫ π/2

Ψ00

dΨ

∫ η(θ)

0

dη
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Figure 8: The domain for interchanging the integrals {η,Ψ}, for a fixed value of
θ, η(θ) = 1.

5 Test Calculations

In Galerkin form, the hypersingular equation to be solved is

∫

Σ

ψ̂k(P )

∫

Σ

(

φ(Q)
∂2G

∂N∂n
(P,Q) − ∂G

∂N
(P,Q)

∂φ

∂n
(Q)

)

dQ dP = 0 , (45)

it being understood that the the boundary limit is taken exterior to the domain
(and thus there is no ‘free term’ outside of the Q integral). The Galerkin weight

functions ψ̂k(P ) are comprised of the linear shape functions on the elements. It
should be noted that while the methods developed herein have been prompted
by the integration of the hypersingular kernel, they are equally applicable to the
less singular kernel functions. Thus, analytic integration has also been employed
to evaluate the coincident and edge-adjacent integrals involving the first order
derivative of G.

The numerical evaluation of the integrals, by which we mean Gauss quadrature
applied to the original integrals without re-ordering, tends to perform reasonably
well for smooth boundaries and regular meshes. In this situation, it is possible that
the small errors in the individual integrals (caused by the logarithmic singularity)
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can partially cancel. As evidence of this, we have solved an interior Dirichlet
problem on the unit sphere (centered at the origin of the coordinate system), the
boundary conditions given by

φ(x, y, z) = x2 + y2 − 2z2 . (46)

(Note that for Symmetric-Galerkin, Dirichlet problems are solved using the poten-
tial equation, not the hypersingular flux equation. However, solving these Dirichlet
problems suffice for the testing of the hypersingular evaluation.) This function is
harmonic, and thus the exact solution is known, and as it is not linear, the linear
element approximation will introduce errors. Denoting the surface area by |Σ|, the
L2 errors are defined as

[

1

|Σ|

∫

ε2(Q) dΣ

]1/2

(47)

where the error function is ε(Q) = fc(Q) − fx(Q), fc and fx being the computed
and exact values of the flux. For the integration, linear interpolation of the er-
ror function is once again employed. Three discretizations of the sphere were
employed, 512, 896 and 2048 elements.

Table 1: Integrated L2 errors for the quadratic Dirichlet problem on the unit
sphere.

Elements η numeric η analytic
ng = 8 ng = 12 ng = 24 ng = 8 ng = 12 ng = 24

512 0.05576 0.05870 0.06063 0.06132 0.06132 0.06132
896 0.05853 0.03754 0.03846 0.04002 0.03940 0.03940
2048 0.03793 0.02565 0.02261 0.02300 0.02300 0.02300

The integrated L2 errors for the sphere problem are shown in Table 1. Although
the three meshes are not sufficient to draw any firm conclusions, for the analytic,
and numeric with ng = 24, the convergence is approximately linear in the average
element area (defined as 4π divided by the number of elements), and hence roughly
quadratic in mesh size (the expected behavior). Note that the analytic method has
essentially converged by ng = 8, whereas the numeric may or may not converged
with ng = 24. The slightly better results for the numerical calculation with ng = 24
is likely due to the fact that this quadrature is employed for the triple integral in the
adjacent vertex singular integration [14], while the analytic result again employs
ng = 8. For the two lowest order quadrature levels, the numerical results are
clearly somewhat erratic.

The problems in the numerical integration are corroborated by examining the
symmetry of the matrix H generated by the hypersingular integral. The maximum
departure from symmetry for a particular row and column k is defined as

max
j

|Hkj −Hjk| . (48)

L.J. Gray et al. / Electronic Journal of Boundary Elements, Vol. 4, No. 3, pp. 105-130 (2006)

122



For numerical evaluation, with ng = 24, on the sphere with 2048 elements, these
numbers are on the order 2 × 10−5; for the matrix elements, this represents an
accuracy of only two to three significant digits. When η is integrated analytically,
the departure from symmetry is less than 10−8, and corresponding matrix elements
agree to at least 6 digits. Thus, we suspect that the slightly better accuracy
for the numerical integration, with ng = 24, is due to fortuitous cancellation of
errors for this smooth geometry. To numerically test the algorithms under more
difficult circumstances, we have examined the same Dirichlet problem, only this
time employing the unit cube (positive octant) as the domain. This exercises the
edge-adjacent evaluation for pairs of elements having a sharp angle, and moreover
forces the algorithm to solve for the individual fluxes at edges and corners. As the
flux is, in general, discontinuous at these geometric discontinuities, the Galerkin
weight functions are chosen to be ‘incomplete’, i.e., they are non-zero only on one
side of the corner/edge [7]; this may inhibit possible cancellation of integration
errors at these nodes.

It should be pointed out that, even with these ‘incomplete weight functions’, the
hypersingular integral remains finite: as the potential is continuous, the limit
analysis in [14] remains valid and all divergent log(ǫ2) terms cancel. Note too that
all individual integrals (coincident, edge) involving the surface flux (one derivative
of the Green’s function) are finite, and thus the discontinuity of the flux or the
choice of weight functions is not a problem for this integral.

Table 2: Integrated L2 errors for the quadratic Dirichlet problem on the unit cube.

Elements η numeric η analytic
(h) ng = 8 ng = 12 ng = 24 ng = 8 ng = 12 ng = 24

300 (0.200) 0.3615 0.3526 0.3477 0.3461 0.3461 0.3461
588 (0.1429) 0.2319 0.2202 0.2139 0.2120 0.2120 0.2120
972 (0.1111) 0.1727 0.1570 0.1489 0.1466 0.1465 0.1465
1728 (0.0833) 0.1353 0.1107 0.0988 0.0959 0.0958 0.0958
3072 (0.0625) 0.1258 0.0863 0.0667 0.0626 0.0626 0.0626
4332 (0.0526) 0.1321 0.0809 0.0538 0.0486 0.0485 0.0485
6912 (0.0417) 0.1531 0.0833 0.0422 0.0344 0.0343 0.0343

The cube problem with the quadratic Dirichlet data was solved for various mesh
sizes and levels of one-dimensional quadrature; we have employed regular meshes
consisting of isosceles right triangle elements with base and height h. Based upon
the sphere results, we employ a minimum of eight Gauss points for the one-
dimensional integrations (for the nonsingular integrals, 12-point two-dimensional
Gauss rule was used for integrals over the equilateral parameter space). The re-
sults, for analytic and numeric evaluation of the coincident and edge-adjacent
integrals, are contrasted in Table 2. As expected, due to the presence of corners
and edges, the convergence in this case is better than linear, but not quadratic.
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Again examining the symmetry of the H matrix for the two calculation methods,
Table 3 shows the maximum departure from symmetry, Eq. (48), for the row and
column corresponding to the corner node (0, 0, 0). For the analytic calculation
there is virtually no change with quadrature level, and thus only the ng = 8 re-
sults are listed. The symmetry using analytic evaluation of the η integral is two to
three orders of magnitude more accurate than for numerical evaluation, and ap-
propriately decreases with decreasing mesh size. These numbers also demonstrate
that the numeric approach has not converged at ng = 24. Away from corners and
edges, both calculations are perfectly symmetric (the non-symmetry on the order
of 10−12 or better), indicating that errors in the numeric integration tend to cancel
on a flat surface (note that part of the hypersingular kernel Eq. (4) vanishes if the
edge adjacent elements are co-planar).

Table 3: Departure from symmetry at the corner node (0, 0, 0).

Elements η numeric η analytic
ng = 8 ng = 12 ng = 24 ng = 8

300 0.1340E − 03 0.7838E − 04 0.2011E − 04 0.3206E − 07
588 0.1375E − 03 0.6199E − 04 0.1590E − 04 0.2290E − 07
972 0.1147E − 03 0.5170E − 04 0.1327E − 04 0.1781E − 07
1728 0.9262E − 04 0.4177E − 04 0.1072E − 05 0.1336E − 07
3072 0.7443E − 04 0.3357E − 04 0.8616E − 05 0.1002E − 07
4332 0.6517E − 04 0.2940E − 04 0.7546E − 05 0.8437E − 08
6912 0.5428E − 04 0.2449E − 04 0.6286E − 05 0.6680E − 08

To understand the errors in the cube calculations, two further tests were con-
ducted. First, the discretized (as opposed to integrated) L2 errors





1

N

N
∑

j=1

ε2(nj)





1/2

(49)

ε(nj) the error at node nj were also computed. The results for the analytic evalu-
ation are given in Table 4 for ng = 8, higher order quadrature produces the same
numbers. If the error function was uniform on the cube surface these numbers
would match fairly closely with those in Table 2. That they do not indicates that
the error is not uniform, and indeed this function is significant only at the edges
of the cube. The convergence rate is therefore dominated by the slow convergence
at the edges, where multiple flux values are computed.

To further check on the origin of this error, the second change was to modify the
boundary conditions. Note that there is no error in interpolating the (flat) cube
geometry, and the exact flux solution is linear as well. Thus, the only sources
of error are from interpolating the quadratic boundary data, Eq. (46), and the
integrations (we ignore the small errors from the linear algebra solution). It is
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Figure 9: Integrated and discretized errors for the unit cube with linear Dirichlet
boundary conditions.

conceivable that the slow convergence at the edges might be due to poor evaluation
of the edge-adjacent integral. To demonstrate that this is not the case, the cube
calculations were repeated, only this time with linear boundary conditions

φ(x, y, z) = x+ y − 2z . (50)

Figure 9 plots the integrated and discrete L2 errors for the linear boundary condi-
tion as a function of the number of elements. The errors are significantly smaller
than for the quadratic boundary condition, roughly an order of magnitude, a re-
flection of the fact that the only remaining source of error is the integration. The
increase with decreasing mesh size is a bit surprising at first: however, theorems
on convergence assume that integrations are carried out without error, and in this
calculation there is only integration error. As the mesh size decreases the area
encompassed by the accurate (analytic) singular integrations is reduced, and more
of the work is being done by the nonsingular (two-dimensional Gauss quadrature)
evaluation. The significant change in results going from ng = 7 to ng = 12 for this
two-dimensional integration further confirms this as the source of the error.

It can therefore be concluded that the errors at the edges in the quadratic cube
calculation stem from the linear interpolation of the boundary data. That this is
only pronounced at the edges stems from the fact that, for a smooth surface, the
interpolation of the potential on one element says nothing about the flux on its
neighboring elements. At an edge however, the approximate potential on one side
of the edge is in fact trying to dictate (incorrectly) a directional derivative of φ on
the ‘other side’ of the edge. This is analogous to the necessary compatability of
flux and potential interpolation required for collocating the hypersingular integral
at a corner [15].
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Table 4: Discretzed L2 errors for the quadratic Dirichlet problem on the unit cube.

Elements ng = 8
300 0.2496
588 0.1575
972 0.1108
1728 0.0737
3072 0.0487
4332 0.0380
6912 0.0271

5.1 Potential Equation

As noted earlier, the integration algorithms designed for the hypersingular kernel
apply as well to the less singular kernel functions. In this case the integrands
that remain after the initial analytic integrations are well behaved, there is no
weakly singular logarithm function; nevertheless, these are are by no means simple
multidimensional integrals. The benfits of applying the above procedures to the
less singular integrals are primarily reduced computational work, and having a
consistent treatment of all integrals. Thus, while not absolutely necessary, it is
of interest to examine the solutions of the standard boundary integral for surface
potential,

∫

Σ

Ψ̂k(P )

∫

Σ

(

φ(Q)
∂G

∂n
(P,Q) −G(P,Q)

∂φ

∂n
(Q)

)

dQ dP = 0 , (51)

when integrating η analytically and numerically.

The unit sphere and cube problems, with quadratic boundary conditions, have
therefore been re-solved using the potential equation. Tables 5 and 6 display the
corresponding integrated errors. As might be expected, the numerical evaluation
does somewhat better for the potential equation, though for the cube, the errors are
again somewhat erratic with respect to quadrature level. Despite the good results
for ng = 24 (again likely due to the use of this quadrature level for the adjacent
vertex integration), it is not clear whether or not the solutions have converged:
the symmetry of the matrix stemming from the Green’s function G(P,Q) is much
closer to the symmetry in the analytic calculation, but still slightly worse.

6 Conclusions

By defining three dimensional Galerkin hypersingular integrals as a boundary
limit, their numerical evaluation is reduced to the consideration of finite integrals
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Table 5: Integrated L2 errors for the quadratic Dirichlet problem on the unit
sphere, solved using the potential equation..

Elements η numeric η analytic
ng = 8 ng = 12 ng = 24 ng = 8

512 0.08663 0.07271 0.06616 0.06435
896 0.09092 0.06038 0.05144 0.05104
2048 0.05005 0.03205 0.02481 0.02368

Table 6: Integrated L2 errors for the quadratic Dirichlet problem on the unit cube,
solved using the potential equation.

Elements η numeric η analytic
ng = 8 ng = 12 ng = 24 ng = 8

300 0.2993E + 00 0.3187E + 00 0.3405E + 00 0.3495E + 00
588 0.1876E + 00 0.1900E + 00 0.2066E + 00 0.2144E + 00
972 0.1434E + 00 0.1300E + 00 0.1413E + 00 0.1482E + 00
1728 0.1193E + 00 0.8706E − 01 0.9116E − 01 0.9690E − 01
3072 0.1105E + 00 0.6337E − 01 0.5877E − 01 0.6326E − 01
4332 0.1086E + 00 0.5607E − 01 0.4534E − 01 0.4901E − 01
6912 0.1078E + 00 0.5067E − 01 0.3222E − 01 0.3462E − 01

containing a weak logarithmic singularity. These integrals arise from consideration
of the coincident and edge-adjacent singular cases. This paper has demonstrated
that, by employing fairly simple re-orderings, the evaluation of these weakly singu-
lar integrals can be handled analytically. While more or less essential for treating
the hypersingular equation, these methods can also be profitably applied to the
standard equation for surface potential.

Extensive testing on a cube problem with Dirichlet boundary conditions has es-
tablished that the analytic integration procedures work quite well. A benefit of
this approach is the reduction in computational effort, the dimension of the co-
incident numerical integration is reduced from two to one, and for edge-adjacent,
from three to two. Moreover, 8 Gauss points is apparently sufficient to achieve
a converged solution, much less than what would be required for a completely
numeric approach.

As a follow-on to previous work [14], this paper has strictly speaking only dealt
with the simplest possible setting, namely the Laplace equation together with a
linear element approximation. Nevertheless, the methods are in fact quite general.
Most Green’s functions can be handled directly, while the extension to higher
order interpolations is straightforward, the basic procedure having been discussed
in [13].
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