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Abstract

A semi-analytic approach is applied to the construction of Green’s functions and
matrices of Green’s type for Laplace and Klein-Gordon equation in two dimensions.
Mixed boundary value problems posed in multiply connected regions are consid-
ered. Statements of the problems are complicated by intricate geometry of the
regions and different types of boundary conditions imposed on different fragments
of the boundary. The approach is based on a combination of the Green’s function
method and the method of functional equations. Kernels of resolving potentials
representing the regular components of the Green’s functions to be constructed

are built with Green’s functions obtained for regions of a standard shape.

Keywords: Green’s function; Laplace equation; Klein-Gordon equation; Mixed
boundary value problems; Regions of irregular shape.

1 Introduction

There exists an opinion within the engineering community that Green’s functions
for applied partial differential equations do not represent a competitive and conve-
nient instrument in the realm of practical computer implementations. The present
project is a part of a wider research undertaken by the authors in recent years and
having the intention to disprove that opinion. The opponents of the Green’s func-
tion approach do not dispute its power in the qualitative theory of differential
equations. What they are contesting is the computational potential of this ap-
proach. One of the arguments that they traditionally adduce is the myth that

Green’s functions can only be constructed for simply connected regions of a stan-
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dard configuration where the region’s boundary is presented by coordinate surfaces
(lines) in a single conventional coordinate system. Until recently, this argument
was dominant among engineers, but has been critically revised in a series of recent
studies [3-9], the results of which call the myth in question.

A semi-analytic technique has earlier been developed [3] that can successfully
be utilized for computing Green’s functions for a certain class of multiply connected
regions of irregular shape. The regions might be filled in with materials whose
property functions are piecewise homogeneous. Note that, within this technique,
the outer contour of a region is of a standard shape and assumed piecewise smooth,
while the inner contours represent smooth curves that do not cross the lines of
discontinuity (if any) of the material properties.

Note also that although boundary conditions imposed on the outer contours
could be of a mixed type, the technique has only been applicable so far to problems
with Dirichlet boundary conditions imposed on the inner contours. The technique
assumes that Green’s functions or matrices of Green’s type for corresponding sim-
ply connected regions of standard shape are either available or can routinely be
obtained. These Green’s functions are used to compile the kernels of some po-
tential representations that are employed to obtain Green’s functions for multiply
connected regions.

To further extend the technique and to make it readily applicable to real
settings in engineering, the present study aims at boundary value problems for
multiply connected regions: (i) with other than Dirichlet boundary conditions
imposed on inner contours, (ii) for a wider variety of shapes of inner contours, and
(iii) with possible intersections of inner contours by the lines of discontinuity of

material properties.

A break-through became possible in the construction of Green’s functions to
mixed boundary value problems for regions of non-standard shape after a score
of computer-friendly forms of Green’s functions were obtained (see [3]) for simply
connected regions of standard configuration. The point is that most of the repre-
sentations of Green’s functions available in literature are inconvenient for computer
implementations. As a typical example of a non-computer-friendly representation,
we recall the classical double series form

G(z,y;€,m) ab Z sin(mmx/a) sin(nmy/b) sin(mm /a) sin(nmn/b)

(m7/a)2 + (nm/b)2

m, n=1
of the Green’s function of Laplace equation for Dirichlet problem in the rectangle
{0<z<a, 0<y<b}. The series in this representation does not (and cannot) uni-
formly converge making the above form inconvenient in computations unless some

analytical adjustments accelerating the convergence are performed in advance.
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2 Simply connected regions of standard shape

We will enlist, in this section, a few mixed (with more than one kind of boundary
conditions involved) boundary value problems for the two-dimensional Laplace and
Klein-Gordon equation in regions of standard shape that allow readily computable
forms of Green’s functions. Those will be used in Sections 3 and 4 where mixed
problems for regions of irregular configuration are considered. The first of those is

1, |1 —ePG=O||1 — ep(x+9)]

. = —1 T
G(m,y,fan) o n ’1 _ ep(z—C)Hl — eP(Z+C)I

1, |1+ ePGHO||1 + er(==0)|
—In

+ =
2|14 ePG=9||1 4 ep(=+)|

e_u(m+€) . . g
sinvysinvng, v=np, p=—
b n:l,3,5,...y(y+'8) 2b

the Green’s function of the mixed boundary value problem

ou
(%‘ﬁ“)

in the semi-strip {Re(z) >0, 0 <Im(z)<b}. Here z=(z,y) and ¢ =(&,n) are the
observation point and the source point, respectively.

ou
= uly:(): 5& yib: 01 |Ulm=oo < 00, ;B >0

z=0

Notice a specific peculiarity of the above statement. It represents a mixed
boundary value problem with three different kinds of boundary conditions imposed

on three different fragments of the region’s boundary.

Two important features make the representation in Eq.(1) effective in com-
puter implementations. First, the singular component of the Green’s function (in
a form of the fundamental solution of the Laplace equation) is split off explicitly.
Indeed, it is contained in the logarithmic term

1 1
- In— 2
or = @G| @

and becomes explicit after the exponent e?(* ¢) is expanded in Taylor series
> n n
p(z—¢) __ P (Z—g)
€ - Z nl
n=0
making the difference (z—¢) a common factor in the denominator of (2).

The second important feature making the representation in Eq.(1) computa-
tionally effective is that its series uniformly converges at the rate of 1/n%. Hence,
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values of the Green’s function defined by Eq.(1) can be accurately computed by a
direct truncation of the series. Sections 3 and 4 deliver persuasive confirmation of
this assertion while we compute Green’s functions for a semi-strip with apertures

and cut-offs of different configuration and location.

To introduce a matrix of Green’s type for a region of standard shape filled in
with a piecewise homogeneous material, we consider now a half-plane Q = {0 <
r <00, 0 < ¢ <m} composed of two fragments. That is, Q = Q; U Qy, where
Q1={0<r<a, 0<p<n}and Qy={a<r<oo, 0<p <}, and pose the following
boundary-contact value problem for functions u(r, ) and us(r, @) defined on the
regions {27 and {2,, respectively

19 <rau1(r,so)) L1 Pulne)

=0, (0,a)x(0,m)

ror or r2  Jp?
19 ( dulre)\ . 1 0Purg) _
~ o ('r o + R =0, (a,00)x (0,7)

[u1(0, )] <00,  |uz(o0,¢)| < 0

Ouy(a,p) RZICHD
or - or

up(r,0) = ua(r,0) = uy(r,m) = ug(r,7) = 0,

u1(a, ) = uz(a, p),

where A = Az/\; stands for the relative material conductivity, with A; and Ay
representing the physical properties of the materials with which the regions 2,

and €2, respectively, are filled in.
The matrix of Green’s type

G= (G'ij(r7 P3Py w))i,jzl,Q

of the above problem has been constructed with its entries expressed in terms of
elementary functions as

. 1 r2 — 2rpcos(p + 1) + p?
Gll("':‘F’yPaw) - 4_7I' 1n7'2—27'pCOS((p—’lp)+p2

A-1 L a* — 2a?rpcos(p + ) + r2p?

A+1 n at — 2(121”p COS(Lp — w) + T2p2 (3)
. _ A 72 — 2rpcos(p + 1) + p?

Gia(r, 00, 90) = or(A+1) HT2—2T‘pCOS(g0—w)+p2 (4)
1 r2 — 2rpcos(p +¥) + p?

Ggl('f', (pvpa w) = ln p (‘p ¢) p (5)

2n(A+1) T r2 — 2rpcos(p — ) + p2
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and 2 ( ) ?
1 r? — 2rpcos(yp + ¥) + p

. = -_— 1
Gaa(rypip¥) = o | r g ooso = ¥) +p?

N A-1 | a* — 2a%rpcos(p + ) + r2p?
n
A+1 7 a* — 2a%rpcos(p — ) + r2p?

(6)

It is evident that the above matrix is suitable for direct computer implemen-
tations. The reader can find a confirmation of this assertion in Sections 3 and 4
where we compute matrices of Green’s type for a composed half-plane weakened

with apertures and cut-offs.
Consider another boundary-contact value problem

82%; + 8 U;
Oz? Oy?

Oui(—a,y)

k2 i =0, (Iay)eﬂi’ (12172)

- ,Bul(_aay) = 07 |UQ(OO,y)l < 00

oz
0 (0,9) = ua(0,y), 3 22—, 2000)
Ou;(z,b)
9y
for Klein-Gordon equations that governs two functions: u; = uq(z,y) defined on
the fragment Q; ={—a<x <0, 0<y<b} and ug =wuq(z,y) defined on s ={0<
z <00, 0<y<b} compiling the semi-infinite strip Q={—a <z < oo, 0 <y < b}.

u;(z,0) =0, =0, (=12

Here the parameters A\; and Mg specify the conductive properties of the materials

of which the fragments of {2 are filled in.
Entries Gy (z,y;€,7m), (1,5 = 1,2) of the matrix of Green’s type for the above
setting are obtained as

2 = 2n—1)mw
G,y €,m) 5ZZ gz, sinvysiny, v = LT, (7)

where
A = (hy+Ahg)(hy+B)e*™* +(hy — Aha) (k1 —B),

the relative material conductivity is defined with A= Xo/A\1, hy = /v2+ k2, (i=
1,2), while the coefficients 9i3(, &) are defined as

1

g?l(ﬂf,f) 2h

{(hl +8) {(hl +Xho)e M FELy (hy — Ahg)e ™™ (HE)] e

+ (1 =B) [(ha+-Mh)e™ ¥ 4 (hy — Ahg)e I}
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G7a(2,€) = A [ (1 +8)eM B+ 4 (hy = Bz | e7het
051 (2,) = [(m+B)eM 4Ot (hy — B)ee] oz
and

1 ~ho|z— - x 1a
952(2,) = 5= { () [(hr-+-Ng)e 18— (hy —Ahg)e=2=+0)] &2
+ (h1—8) [(hl +)\h2)€_h2(2+5)—(hl—)\hz)e_hzlz_sq}

Another matrix of Green’s type

G= (Gij(m,y;ﬁ,ﬂ))i,jzﬁ
has been constructed for the following boundary-contact value problem

82 ; 62ui R
TurZH 0 e (=129
|ug (—00,y)| < 0o, |ug(oo,y)| < o0

A aul(_G‘?y) )‘28u2(—a, y)

ul(_'aﬂy) = U2(_ayy)a 1 Oz = oz
Oug(a, Jus(a,
ur(a9) = wag), 2 2HLY _ Pusly)
wi(2,0) = 0, auiéz, b) _ 0, (i=123)

posed for the functions u; = u;(z,y), (:=1,2,3) each of which is defined on the
corresponding fragment Oy ={—oco<z < —qa, 0<y<b}, Yp={—-a<z<a, 0<y<
b}, and Q3={a <z < oo, 0<y<b} of the infinite strip Q= {—co< z <00, 0<y < b}.
Conductive properties of the materials, of which the fragments €2; are filled with,

are specified by the constants \;, (:1=1,2,3).
Entries of the matrix of Green’s type G are found in this case as

I 1 . . 2n — 1)7
Gij(w,y:6,m) = 7 > TARYE (%, 8 sinvysinvn, v = (_213—)’ (8)
n=1

where
A* = (1=Ay)(1=A2)+(14+A1)(1+Ag)e* e,

with the relative material conductivities defined with A; = Ag/A; and Ag = A3/,
while the coefficients g7%(z, &) read as

011 (,€) = [(1 M) (1= Ao)+ (1= M) (L Ag)e] e HE+3) 4 Aremvio=t
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Gia(w,€) = 201 [(1=A2)e" €=+ (14 Ag)er(*0)] o/ Ooto)
i@, &) = AA1 Agerttet=2)

921(x, &) =2 [(1——1\2)6"(I+“)+(1—|—A2)e"(3“—x)} er(atd)
B0, €) = (M1 +1) [(1-Aa)e 46839 4 (1 pg)otsertot)]
(A1) [(L=Ag)e EmO 4 (14 Ag)er o)

9(z,€) = 2As [(1+A1)e"<3a+r>+(/\1—1)ev<a-r>} ev(a=0)
g31(2, &) = 4ev(a=mtE)
93a(,€) = 2 [(1+ Ar)e @) 4 (Ag —1)er(e-6) grla=2)
and ‘

955(2,€) = [(A1—1)(A2+1) + (A1 +1)(Ag—1)e??] " (2===8) 4 Ave=vI=—tl

Note that the series representing the diagonal etries G;; of G converge at a low
rate of 1/n and are, therefore, ineffictive in computer implementations. To enhance
the computability of the entry Gi, for example, after some transformations we
rewrite its coefficient in the form

ghi(@,§ _ 1 eIzl
(2n—-1)A*  2n-1

(1-A1)  v@rerea) , Yl —Ag)er(etE+20)
(217,—1)(1-1—/\1) (2n—1)(1+A1)A*

+

This yields

1 o e~vlz=¢l
Gu(z,y;&m) ==Y —5—1 [cosv(y—n)—cosv(y+n)]

& n=1

(1 Al X pv(z+E+2a)

7(1+A1) nzl grot (cosvlymm) —eosu(y )]

+

4N (1-Ag) X eV (@tet2a)
7r(11(_}“/\1)2) Z G5 [cosv(y—n)—cosv(y+n)]
n=1

Remind that both (z,y) and (§,7) in Gi1(z,y; €,n) belong to ;. This implies
that both variables z and £ never top the value of —a making the last of the above
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series convergent at an extremely high rate and convenient, therefore, in practical
implementations in its carrent form. As to the first two series, they are completely
summable. Upon performing some algebra, the entry G11(z,y;&,n) is ultimately
rewritten in a computer-friendly form as

|1+ ep(==9)| Il - ep(z—f)l

1
Gii(z,y; =—<In —
11( Yy g’n) 2 |1 _ ep(zvc)‘ il + ep(z—()’

ll _ ep(Z]+C1)|

-y, e
+2——1n —
(1+Aq) '1 — ep(z1+C1)' Il + eP(21+C1)‘

16A;(1—Ag) o e(=+ét20)
(1 +A1) = (QTL—].)A*

sinuysinun}, p==

where the following compex variables
z=z+iy, (=&{+im, a=(z+a)+iy, G=(+a)+in

are introduced for compactness, and the bar on a variable means the conjugate.
The other diagonal entries Gog(z,y;£,m) and Gas(z,y;&,7) also reduce to a
computer-friendly form by using similar transformations.
Later in Sections 3 and 4, the functions and matrices of Green’s type enlisted
in this Section will be employed to handle mixed boundary value problems for
simply and multiply connected regions of irregular configuration.

3 Simply connected regions of irregular shape

To advocate an approach that we propose for the computing of Green’s functions
for mixed boundary value problems in simply connected regions of irregular con-
figuration and to show its potential, we consider, in this section, a number of
illustrative examples.

Example 3.1: Consider the region Q={0<z<b, z<y<b} representing an
isosceles right triangle. Let the following boundary conditions

Ju du
— —Bu = —
Oz v= Oy
be imposed on its contour.
Fixing the source point (£*,n*) inside 2, we express the Green’s function

I(z,y;£*,n*) of the boundary value problem that appeared in Eq.(9) for the
Laplace equation in the form

D(z,y;€%1") = Gz, y;£",1") + G*(z,y), (10)

=0, 620 9)

y=b

= |
=0

89



Y.A. Melnikov and M.Y . Melnikov / Electronic Journal of Boundary Elements, Vol. 4, No. 3, pp. 82-104 (2006)

where G(z,y;£*,n*) represents the Green’s function for the semi-infinite strip,

presented earlier by Eq.(1) in Section 2.

It is evident that, due to the presence of the component G(z,y;&*,n*) in
Eq.(10), I'(z,y;£*,n*) possesses the logarithmic singularity at (z,y) = (£*,7%).
On the other hand, for I'(z, y; £*,1*) to be harmonic at any point (z,y)# (£*,7%)
in © and to satisfy the boundary conditions imposed on the fragments £ =0 and
y=b, the additive component G*(z,y) in Eq.(10) ought to be harmonic everywhere
in Q and also satisfy these boundary conditions. This means that for I'(z, y; £*,n*)
to satisfy the boundary condition imposed by Eq.(9) on the segment y = z, the
component G*(x,y) ought to compensate the values of G(z,z;£*,n*) on y = x.
That is

G*(z,2) = —G(z,2;£",77) (11)

In compliance with our algorithm based on the Green’s function modification
[3] of the method of functional equations (2], we look for G*(z,y) in a form of the
modified potential representation

mww=/amwmm@mw@m, (12)
F

where F' is a segment of the straight line y =z —¢ (a fictitious contour) ranging
from O to b. Clearly, this segment is parallel to the fragment y =z of the contour
of 2 and is located outside of 2. Notice that ¢ represents a regularizing parameter

in our algorithm.

Since the Green’s function G(z,y; €,7) is the kernel of the integral representa-
tion in Eq.(12), the component G*(x,y) is harmonic in 2 and satisfies the boundary
conditions imposed on the fragments =0 and y=5. Whereas, when the condition
in (11) is satisfied, we come up with the following functional equation

—maarmwzfewaammamwmm> (13)
F

in the density function u(&,n).

Since the sets of observation and source points never overlap in (13), its nu-
merical solution is not a problem. The only important issue is a choice of the
parameter € that provides the regularizing effect in the numerical algorithm. This
issue outgh to be handled on a case-by-case basis. After the density function u(&,7)
is found, the representation in (10) is used to compute the profile I'(z, y; £*,n*) of
the Green’s function in 2.

In Fig.1 we depict a contourplot of I'(z, y; £*,n*) where the parameters in the

statement were chosen as b=1 and = 5.0, while the source point (£*,7*) was
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fixed at (0.3,0.7). The series in (1) has been truncated at N =100. The estimate
of its remainder obtained in [4] suggests that such a truncation allows to attain
the accuracy level of 99.9% in computing values of G(z,y;&,n). The regularizing
value of the parameter € was, in this case, found as 0.05. The functional equation
in (13) was numerically solved by using the standard trapezoidal rule with uniform
partition (m=20) of the fictitious contour F.

Example 3.2: As another illustrative example, consider a region 2 bounded
with the straight line segments: =z =0,y =0,y =1 and the quarter-circle C' =
{(z—1)2+(y—1)2=1,z>1,y<1}. Fig.2 brings the profile I'(z,y; 1.0,0.5) of the
Green'’s function of the Laplace equation for the problem

B ===
Oz :1:=0_ ° v=or 87”

posed in . Same algorithm, as described in the previous example, was employed.
The Green’s function G(z,y;£,7n) as of Eq.(1), with b=1 and 8=1, was used for
the first additive component in Eq.(10) and to form the kernel of the resolving
potential in Eq.(12). The functional equation

(e, 1~/ T @1 ) = / Gl 1—/T= (o 1% €, )ulE, n)dE (£, )
F

=0, (14)
y=1

arises when the boundary condition imposed on the C part of the contour is
satisfied. Regularizing parameters were found as: N =100, m = 20,¢ =0.03, and
the fictitious contour is F={(z—1)24(y—1)2=(1+¢)%,z>1,y<1}.

Example 3.3: To show that our algorithm can be adjusted to boundary-
contact value problems posed on simply connected regions of irregular configu-
ration, we consider a region {2 bounded with the straight line segments x = —2
and y=0, the quarter-circle C' = {z?+ (y—n)? =72} (with 0 < z,y < ), and the
line segment y =m. By the interface z =0, the region 2 brakes onto two subregions:
the rectangle Q; = {-2<2<0,0 <y<7} and the quarter-disc 9, with radius m,
centered at (0,7). Each of the subregions is filled in with a material of different
conductive property specified with A; and As, respectively.

The following boundary-contact value problem for Klein-Gordon equations

2u;  O%uy
B2 "y
20 fun(-a,2) =0, (o 1) ypec =0

3 200y) _ | u(0,)
Yo T oz

—klu; =0, (z,y)€, (=1,2)

u1(0,y) = u2(0, ),
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Oui (CE, 7T)

ui(z,0) =0, By

=0, (i=1,2)

is posed on €.
The entries T';;(z, y;£,n) in the matrix of Green’s type

I'= (Fij (w,y;fan))i,j:ﬁ

for the above problem setting are expressed, for a fixed location (£*,7*) of the
source point, as

Dij(z,y;€%,m%) = Gij(z,y;€,1%) + G35 (z,9), (15)

where Gi;(z,y;&*,n*) represents the ij-th entry in the matrix of Green’s type
presented by Eq.(7). Clearly, in the entries I'y; and 'y, the source point (£*,7*) €

€11, whereas in the entries I'y3 and I'sq, it belongs to Q.

We introduce a circular fictitious contour F = {z?+(y—7)? = (7 +¢)?} (with
0<z,y<m+e) concentric with C, and express the first row entries G1,(z,y), (j =
1,2) in the additive component G*(z,y) in Eq.(15) as the modified potential

t(2,y) = / Gale, y; &M (€, MAF(E,m),  (2,y) € D, (16)
F

while for the second row entries G3;(x,y), (j = 1,2) we have

G;j(may) = /G22(may;€an)ﬂj(€an)dF(gan)a (w,y) € QZ (17)
F

The density functions p;(€,7),(5 =1,2) in the above representation can be
obtained by satisfying the boundary condition imposed on C. This yields the
functional equations

Gyt ") = / Gon(a, v € s (E,)dF(E,m), (2,9)€C, (7=1,2) (18)
F

in the density functions.

In Fig.3 we depict profiles of the entries I'y 1 (z, y; £*, 7*) (defined for (z,y) €$y)
and I'sy(z,y;€*,n*) (defined for (z,y) € Q2) in the matrix of Green’s type that is
found, where the source point is fixed at (—.75,1.8) € Q. Parameters defining the
statement were chosen as k; =0, ks =1, 8=0, and A=10. The series in Eq.(7)
have been truncated to the N-th partial sum. Numerical solution of the functional
equation in (16) and computation of values of G};(z,y) and G5;(z,y) have been
conducted by replacement of the line integrals in compliance with the standard
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trapezoid rule (with m uniformly spaced quadrature nodes). Regularizing values of
the computational parameters have been found as: N =100, m=20, and £ =0.02.
Fig.4 exhibits profiles of the entries I'12(z,y;£*,1*), with (z,y) € @, and
Poo(z,y;€*,m*), with (z,y) € Qa, where the sounce point is fixed at (1.0, 1.8) € Q5.
Parameters defining the statement were chosen as k1 =0, ks =1, =0, and

A = 0.1. Regularizing values of the computational parameters were found as:
N =100, m=20, and €=0.01.

Example 3.4: We consider a half-plane Q={0<r <o, 0< ¢ <7} composed
of two fragments Q1 ={0<r<a, 0<p <7} and Dy ={a<r <00, 0 <p <7}
filled in with different materials (A; and Ag), with 7 =a being the interface. The
half-plane is weakened with a cut-off 23 whose contour C represents a semi-ellipse,
with semi-axes ag and (o, centered at (a—ayp,0). Hence, C internally touches the
interface r=a at (a,0) and its Cartesian equation appears as

y="22\faf - [p—(a—a0)P

Qp

The matrix of Green’s type

I'= Ty (r, 05 0,9)); ;13

is to compute now for the following boundary-contact value problem

2
10 <TM> ; Louly) =0, (r¢) €\

ror or r2  Qp?
19 [ Oua(r,p) 1 Pug(r,p)
ror (T or te dp? 0. (re)e
B Bur(a,9) . Busla,p)
Uy (a’ SD) = Uz (a’7 SO)’ ar - A 87'

u1(r,0) = ug(r,0) = uy(r,7) = ua(r,m) =0, u

(rp)ec =0

posed on the compound region Q=0 \ Q23 U Qs of irregular shape.
We express the matrix T, for a fixed location (p*,1*) of the source point, as

L(r, 0 0%,9%) = G(r, 0, 0%,0") + G*(r, ), (19)

where G(r, ¢; p*,1*) represents the matrix of Green’s type for the compound half-

plane, whose entries are presented by Egs.(3)-(6).
To be certain, let (p*,%*) € Qs and express the entries Gl (7, @), (1 =1,2) of
the first column of the additive component G*(r, ¢) in Eq.(19) as

Gh(r, ) = / Gaalr, 0 p, ) (o, 0)AF (0,9),  (ry0) € D, (20)
F
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where F' is a fictitious contour
[ﬂ:—(a—ao)]2+y2=(m0—s)2

concentric with C, with mg=min(ag, 8y) and e representing a regularizing para-

meter.
The density function p(p, 1) in (20) can be obtained by satisfying the boundary
condition imposed on C for uj(r, ). This yields the functional equation

—Glz(v",w;p*,w*)=/Gll(r,w;p,w)u(p,w)dF(p,w), (r,p) € C (21)
F

in the density function p(p, ¥).

In Fig.5 we depict profiles of the entries ['15(r, ; p*,9*) and Tag(r, @; p*, ¢*),
which are defined on Q;\Q3 and 9, respectively, in the matrix of Green’s type
for ?2, with a =1. The relative material conductivity is defined with A=0.2, and
the source point is fixed at (1.25,27/3) € Q3. The cut-off’s semi-axes are chosen
as: a9=0.5 and By=0.6. Numerical routine based on the standard trapezoid rule
was used in solving the functional equation in (21) and in computing values of the
potential in Eq.(20). Regularizing values of the computational parameters have
been found as: m =20, and £=0.02.

4 Multiply connected regions

We will explore the potential of our approach to the construction of Green’s func-
tions by extending it to multiply connected regions of irregular configuration.
Mixed boundary value problems will be of our interest as those with different
types of boundary conditions imposed on different sections of the region’s con-
tour. Green’s functions and matrices of Green'’s type for regions of standard shape
(of the kind enlisted in Section 2) will be used to comprise kernels of resolving
modified integal representations. Similarly to the presentation in Section 3, a set
of particular examples will be presented below, each of which highlights different
peculiarities of the approach and reveals an extent to which it is productive.

Example 4.1: We begin with computing the Green’s function for the bound-
ary value problem

au a’U,

——— = = _— = >

ax IBU =0 uly:m—l u’y: ay y=1 07 /B - O (22)
ule =0,  C={(x—0)?+(y—yo)>=R?} (23)
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posed for the Laplace equation in a double connected region (2 representing the
trapezoid (shown in Fig.6) weakened with a circular aperture, with radius R,

centered at (zg,Yyo)-
We express the Green’s function I'(z, y; £*,n*) of the boundary value problem
in Eqgs.(22) and (23) in the form

D(z,y;&*,n") = G(z,y;€",n") + G* (2, ), (24)

where the source point (£*,7*) is arbitrarily fixed inside 2. The component
G(z,y;€*,n*) represents in (24) the Green’s function for the solid semi-strip (see
Eq.(1) in Section 2) and brings the logarithmic singularity to I'(z,y;£*,n*) at
(z,y)=(£*,n*), if the component G*(z,y) is harmonic at any point (z,y)in €.

For I'(z,y;£*,m*) to comply with the relations in Egs.(23) and (22), G*(z,y)
ought to satisfy the conditions imposed on =0, y=0, and y=1, while on y=2z-1
and on C' it ought to satisfy the conditions

G*(IE,.'E—].) :"G(%ﬂ?—l;f*m*) (25)

and
G*(z,y(z)) = —G(=,y(x); £",n"), (26)

where y(z) = yo + /R?—(x—1x¢)?
Since G*(z,y) is harmonic in £, to find it we construct the modified integral
representation

2
G*(z,y) = Z/G(m,y;&n)ui(&n)dﬂ(&,n), (27)
i=1j
where the fictitious contour Fj is a segment of the straight line y = z —(1+¢;)
ranging from O to 1, while Fy is a circle, with radius R—e5, concentric with C.

Notice that €; and €2 represent regularizing parameters.
Upon satisfying the conditions in (25) and (26), we obtain the following system
of functional equations

2
~G(a,a=15¢"17) = Y, [ Glao-L g mule, MR (En)

i=1 o

2
~G(e, @6 r) = Y [ Gl @& (e mdREm)
=1
in the density functions p1(€,7) and p2(€,m). After the latter functions are found,
the representation in (27) is used to compute the profile I'(z,y;&*,n*) of the
Green’s function in 2.
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Fig.6 shows a contourplot of I'(z, y; £€*,n*) where the parameters in the setting
are: $=2.0, £o=0.4, yo=0.3, and R=0.15, while the source point (£*,n*) was
fixed at (0.8,0.6). The regularizing values of the parameters €; and €2 were, in this
case, found as 0.03 and 0.05, respectively. The standard trapezoidal rule (m=20)
was used to numerically solve the system of functional equations in p1(£,7n) and
p2(€,m) as well as to compute values of the integral representation in Eq.(27).

With the next example, which is more or less trivial, our intent is to explore the
potential of our algorithm toward problem settings with different kinds of boundary

conditions imposed on contours of apertures in multiply connected regions.

Example 4.2: In doing so, consider a double connected region € representing
a half-plane {y > 0} weakened with a hole whose contour C is a circle, with radius
a, centered at (zg,yo). We will compute a profile I'(z,y; £*,n*) of the Green’s
function for the mixed boundary value problem

d%u(z,y) N O%u(z,y)
0z? Oxz2

=0, (z,y) €

Ou(z,y)

u(z,0) =0, o

=0,
(z,y)eC

where a source point (£*,1*) is arbitrarily located in {2 and

n = cos(n, ac)i + cos(n,y)-g

Oz Oy

represents the normal direction to C.
As usual, we look for the Green’s function in the form

D(z,y;£",n") = G(z,y;€",n") + G*(z, ),

where

1 (z &)+ (y+n)?
G(z,y;€",m") = 5—In A
ey s

represents the classical [1] Green’s function of the Dirichlet problem for the half-

plane. The component G*(z,y) is expressed with a modified integral representa-
tion as

G* () = / Gl y; & myul€,m)dF (€, ) (28)
F

where the fictitious contour is a circle
F={(z—z0)* + (y—v0)* = (a—¢)?}

concentric to C, with € representing a regularization parameter.
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Since the sets of observation and source points never overlap, the Neumann
condition on C results in the following regular functional equation

_9G(z,y;€",m") _ / 0G(z,y;§,m)
on n on

1 mdF(&,n), (z,y) €C
F

in the density function u(£,7). No computational obstacles arise while solving this
equation numerically.

To illustrate the effectiveness of our approach, the profile I'(z,y;0,3.5) of
the Green’s function that we have computed is depicted in Fig.7, with z¢ = 2.0,
yo=2.0,8=2.0, and a=1.0. The regularizing value for ¢ was found, in this case,
as 0.2.

The example that follows is designed to show that the number of apertures in
multiply connected regions, their shape, location, and type of boundary conditions

imposed on them do not represent a factor in our algorithm.

Example 4.3: A triple connected region 2 represents the semi-strip {0 <z <
00, 0<y<b} weakened with an elliptic aperture contoured with

Cr— {(-76—3261)2 L= 1}

aj 5%

and the circular aperture

Co = {(z~x2)2 + (y—y2)%= a2}

Mixed boundary value problem for Laplace equation is considered where Dirich-
let and Neumann conditions are imposed on C) and Cj, respectively, while the

boundary conditions on the outer contour of 2 are defined by Eq.(22).

The Green’s function I'(z,y;£*,n*) for the above setting is expressed by the
integral representation in Eq.(24) where the fictitious contours Fy and F; are, in
this case, defined as

Fi ={(z—21)*+ (y—11)* = (m1—e1)?

and
Fy = {(z—22)*+ (y—v2)* = (az—e2)?,

where m; =min(as, 81), while €1 and e2 represent regularizing parameters.
By satisfying the boundary conditions on C; and Cs5, we obtain the following
system of resolving functional equations

2
~Gle, ¢ ) =Y [ G u& e NaFE ), (@) e

i=1 F
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2
_0G (zg;f %) > /8Gmy§77 e dEEm,  (2,9) € Co

The profile I'(z, v;0.8,0.5) of the Green’s function, as depicted in Fig.8, has
been obtained by using our customary algorithm. The parameters defining the
setting has been defined as: b=1.0, 1 =0.35, y; =0.5, a1 =0.12, 8, =0.1, 22 =1.3,
y2=0.5, and as =0.2. Regularizing values of the computational parameters were
found as: N =100, m=20, ¢; =0.02, and 5 =0.04.

The following two examples are presented to just show that our numerical
algorithm ensures high accuracy level in computing Green’s functions in compound
multiply connected regions when contours of apertures either touch or even cross

interfaces of materials.

Example 4.4: The half-plane {0 <r < 00, 0 < ¢ < 7} is considered as
composed of two fragments Q; ={0<r<a, 0<p<7} and Qy={a<r <oo, 0<
@ <} filled in with different materials (A = 0.1). The fragment Q9 is weakened
with a circular aperture whose contour C' touches the interface line » = a. This
generates a double connected compound region 2. Dirichlet boundary condition
is assumed on the inner contour C of Q.

The matrix, with entries presented in Egs.(3)-(6), has been employed for
obtaining the kernel of the resolving inregral representation, which we used to
compute the regular components of the matrix I'(x,y;&,n) of Green’s type for
the double connected region Q. Fig.9 presents the profiles I'1;(r, ;0.5,7/3) and
Ta1(r, ¢;0.5,7/3) of the first column entries in this matrix.

Example 4.5: The infinite strip {—co <z < o0, 0 <y < b} is composed of
three fragments Oy ={—co<z < —a, O0<y<b}, ={-a<z<a, 0<y<b}, and
Qz={a<z <00, 0<y<b}, each of which is filled in with materials of different
conductive properties (A;, (i=1,2,3)). The strip and weakened by the ”fat circle”
shaped aperture

C = {(z —x0)* + (y — )" = ag}
whose center is on the interface line of 25 and Q3, forming a double connected
compound region €.

Our algorithm has been used for computing the matrix I'(z, y; £, n) of Green’s
type for Q. The matrix defined in Eq.(8) has been employed in obtaining the kernel
in the resolving potential representation for the regular components in T'(z, y; £, 7).
Three entries of this matrix are depicted in Fig.10. Since the source point (£*,7*) is
located in Q, these entries are I';y (z, y;£*,7*), (i = 1,2,3). The relative material
conductivities are defined with A; = As = 0.1.
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Closure

We have explored, in this study, the potential of the Green’s function modification
of the method of functional equations in computing Green’s functions and ma-
trices of Green’s type for mixed boundary value problems stated on 2-D regions
of irregular configuration. Laplace and Klein-Gordon equation have been consid-
ered. Computer-friendly forms of Green’s functions for regions of standard shape
have been presented and employed in our computer algorithm. Thus, this study
widens the range of computer implementations for the Green’s function methods

in applied sciences.
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Figure 1: Green’s function of a mixed problem in a triangular region
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Figure 2: Profile of the Green’s function in a region of irregular shape
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Figure 4: Entries of the second column in the matrix of Green’s type
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Figure 6: Profile of the Green’s function in a double connected region
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Figure 8: Mixed problem in a multiply connected region

103



Y.A. Melnikov and M.Y . Melnikov / Electronic Journal of Boundary Elements, Vol. 4, No. 3, pp. 82-104 (2006)

-1

Figure 9: Aperture touching the interface line
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Figure 10: Contour of an aperture crosses the interface line
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