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Abstract

We investigate the condition number of the matrices that appear in the boundary element
method. In particular we consider the Laplace equation with mixed boundary conditions.
For Dirichlet boundary conditions, the condition number of the system matrix increases
linearly with the number of boundary elements. We extend the research and search for a
relation between the condition number and the number of elements in the case of mixed
boundary conditions. In the case of a circular domain, we derive an estimate for the
condition number of the system matrix. This matrix consists of two blocks, each block
originating from a well-conditioned matrix. We show that the block matrix is also well-
conditioned.

1 Introduction

Boundary Value Problems (BVP) can be solved by the Boundary Element Method (BEM).
This method transforms the BVP into an integral equation, which after discretization of
the boundary, results into a set of linear algebraic equations. The system matrix that ap-
pears in this set of algebraic equations is dense. It is a well-known fact that the condition
number of the system matrix is at least order N , where N is the number of boundary
elements, [1]. In [2] the Dirichlet BVP for the Laplace equation is studied, where two
domains are taken into account: a circle and an ellipse. In both cases analytical expres-
sions for the condition number are derived. The results show how the condition number
depends on the radius of the circle or the aspect ratio of the ellipse. Comparable results
are given in [3]. In [4] and [5] the Laplace equation on a circle with Dirichlet boundary
conditions is again investigated. Special attention is given to the so called local condition
number. All papers mentioned above deal with BVPs with Dirichlet boundary conditions.
In boundary integral equations single and double layer potentials arise. The analysis of
these boundary integral operators is a well-chartered area. For instance, in [6] the spectral
properties of the Laplace and Helmholtz integral operators are investigated as well as the
eigenvalues of the corresponding discrete operators. Preconditioning the matrices in the

W. Dijkstra and R.M.M. Mattheij / Electronic Journal of Boundary Elements, Vol. 4, No. 2, pp. 67-81 (2006)

67



BEM is the topic of [7], [8], and [9]. These papers also deal with the spectral properties of
the boundary integral operators. In [10] the authors investigate Neuman’s method, which
can handle both Dirichlet and Neuman BVP’s.

For a Laplace equation with either Dirichlet or Neuman boundary conditions the spec-
tral properties of the single and double layer potentials have been investigated thoroughly.
Yet the conditioning of the resulting algebraic system received little attention. For a prob-
lem with partial Dirichlet and partial Neuman boundary conditions this is even more true.
It is well known that the matrices corresponding to the single-layer potential and double-
layer potential are well conditioned, see e.g. [6] and [11]. The matrix for the mixed prob-
lem is composed of two blocks from these matrices. These blocks may be skew. Hence
the question arises whether the system matrix for the mixed problem is still a reasonably
conditioned matrix. In practical applications the possibility of an ill-conditioned matrix is
never considered. This is therefore the topic of this paper: can we foresee ill-conditioned
matrices in the mixed problem.

We do not consider the problem in all its generality, but restrict ourselves to a two-
dimensional situation and a fairly simple geometry, a circle, so that we can give explicit
expressions, or at least sharp estimates, for the underlying eigensystems. We are aware
of several formulations of the boundary integral equations. In this paper we choose for
the direct symmetric collocation formulation. The direct formulation involves functions
that can be easily related to physical quantities, whereas the indirect formulation uses
auxiliary functions that have no physical meaning. The symmetric formulation, involving
the single and double layer potentials, is more commonly used than the non-symmetric
formulation, which incorporates the hypersingular operator. We prefer the collocation
method above the Galerkin method. Again the collocation method is more commonly
used and it does not require a second integration step like Galerkin method does.

The paper is set up as follows. In Section 2 we introduce the BVP and we briefly explain
how a set of linear algebraic equations is obtained. Section 3 describes the derivation of
the estimate for the condition number. The estimate is shown to be fairly accurate for
several examples, in Section 4.

2 Setting

In this section we briefly describe how a set of algebraic equations is obtained from a
boundary value problem. In particular we consider the Laplace equation for the unknown
function u = u(x). The taken domain is a circle Ω with radius R. The boundary Γ of
the circle is divided into two parts, i.e. Γ = Γu

⋃
Γq, as shown in Figure 1. On the part

Γu we pose Dirichlet boundary conditions; on the part Γq we pose Neuman boundary
conditions. We introduce q := ∂u/∂n as the normal derivative of u on the boundary and
obtain the boundary value problem







∆u = 0, x ∈ Ω,
u = ũ, x ∈ Γu,
q = q̃, x ∈ Γq ,

(1)

where ũ and q̃ represent the given boundary values. We use the BEM to find the unknown
values of u on Γq and the unknown values of q on Γu.
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Figure 1: The domain on which the Laplace equation holds. The boundary is divided into
two parts and discretized into N elements: m elements have Dirichlet condi-
tions and N − m elements have Neuman conditions.

Using the fundamental solution for the Laplace operator and Greens second identity, the
boundary value problem transforms in the following boundary integral equation (cf [12]),

(1

2
I + Kd

)

u = Ksq, (2)

where the integral operators are given by
(
Ksq

)
(xP ) := − 1

2π

∫

Γ

ln ‖xP − xQ‖q(xQ)dΓQ, xP ∈ Γ,

(
Kdu

)
(xP ) :=

1

2π

∫

Γ

(xP − xQ, nQ)

‖xP − xQ‖2
u(xQ)dΓQ, xP ∈ Γ. (3)

Here nQ is the outward normal on Γ at the boundary point xQ, (·, ·) is the standard
Euclidean inner product and ‖·‖ the associated norm. The eigenvalues and eigenfunctions
of the operators are given in Table 1 (cf [3], [6]). Note that the integral operators Ks and
Kd and the Laplace operator ∆ have the same eigenfunctions while the eigenvalues differ.

We approximate the boundary by N equispaced linear elements Γk, k = 1, . . . , N ,
see Figure 1. We choose the first m elements to relate to the Dirichlet boundary and
the last N − m elements to the Neuman boundary. At the center of an element Γk

we choose the nodal point xk := [R cos θk, R sin θk]T , where the angle θk is given by
θk := π/N + (k − 1)2π/N , k = 1, . . . , N . At each element we approximate the func-
tions u and q by constant values, i.e. uk := u(xk) and qk := q(xk). The discretization
transforms the boundary integral equation (2) into

H̃u = Gq. (4)
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eigenvalues Ks eigenfunctions Ks

−R log R 1

R
2n sin(nθ)

cos(nθ)

eigenvalues Kd eigenfunctions Kd

− 1
2 1

0 sin(nθ)

cos(nθ)

Table 1: The eigenvalues and eigenfunctions of Ks and Kd.

Here H̃ := 1
2I + H and the matrix elements of H and G are given by

Glk := − 1

2π

∫

Γk

ln ‖xl − xQ‖ΓQ,

Hlk :=
1

2π

∫

Γk

< xl − xQ, nQ >

‖xl − xQ‖2
dΓQ. (5)

The matrix I is the N × N identity matrix and the vectors u := [u1, . . . , uN ]T and
q := [q1, . . . , qN ]T are the coefficient vectors of u and q.

The first m coefficients of u are given by the Dirichlet conditions and the last N − m
coefficients of q are given by the Neuman conditions. To obtain a standard linear system
with all the unknowns on the left-hand side, we need to move the first m columns from
the left-hand side in (4) to the right, and replace them by the first m columns from the
right-hand side. To this end we introduce the projection matrices

P1 :=

[

Im

∅

]

, P2 :=

[

∅
IN−m

]

, (6)

where Ik is the identity matrix with size k. The system in (4) is written as

Ax = G̃b, (7)

with the matrices A and G̃ given by

A := [−GP1 | H̃P2],

G̃ := [−H̃P1 | GP2], (8)

and the vectors x and b by

x := [q1, . . . , qm, um+1, . . . , uN ]T ,

b := [u1, . . . , um, qm+1, . . . , qN ]T . (9)

The system matrix A in (7) and the right-hand side G̃b are known. All unknown co-
efficients are in the vector x. In the remainder of this paper we focus on estimating the
condition number of the matrix A.

By introducing polar coordinates we can calculate the matrix elements Hlk in (5) ex-
plicitly. Then it can be shown that all diagonal elements of H̃ have the value 1/2, while

W. Dijkstra and R.M.M. Mattheij / Electronic Journal of Boundary Elements, Vol. 4, No. 2, pp. 67-81 (2006)

70



all off-diagonal elements have the value −1/2π tan(π/N). For this circulant matrix [13]
it is possible to give the exact discrete eigenvalues, see [3]. We find

λ1(H̃) =
1

2
+

1

2π
tan

π

N
, (mult. N − 1),

λN (H̃) =
1

2
− N − 1

2π
tan

π

N
, (mult. 1). (10)

The matrices G and H directly relate to the integral operators Ks and Kd. In the limit
case N → ∞ the discrete eigenvalues of G and H are equal to the analytical eigenvalues
of Ks and Kd. Hence, in the remainder of this paper we estimate the eigenvalues of G by
the eigenvalues of Ks. For H̃ we use the eigenvalues in (10).

3 Estimating the condition number of A

In this section we show that the matrix A can be decomposed into four matrices; a unitary
matrix F, a diagonal matrix D, a matrix Q that consists of two blocks with orthogonal
columns, and a upper triangular matrix U. For the latter three matrices we derive esti-
mates for the condition number.

3.1 Decomposition

Due to the symmetry of the discretization of the boundary the matrices G and H̃ are
circulant matrices (see [3]) and can therefore be decomposed as

G = F∗ΛGF,

H̃ = F∗ΛHF. (11)

Here ΛG and ΛH are diagonal matrices containing the eigenvalues of G and H̃ respec-
tively. The matrix F is the so called Fourier matrix, whose elements are defined by

F ∗
ij :=

1√
N

w(i−1)(j−1), (12)

where the asterisk denotes complex conjugate transpose and w := e2πi/N is the N -th root
of unity. Substituting the decompositions for G and H̃, we write A in (8) as

A = F∗[−ΛGFP1 | ΛHFP2]. (13)

Note that the eigenvalues of ΛG are known via the eigenvalues of the corresponding
integral operator and the eigenvalues of ΛH are given in (10). We define F1 := FP1 and
F2 := FP2 to write

A = F∗[−ΛGF1 | ΛHF2]. (14)

By introducing two other diagonal matrices Λ and D according to Λ := Λ
1/2
G Λ

−1/2
H and

D := Λ
1/2
G Λ

1/2
H we obtain

A = F∗D[−ΛF1 | Λ−1F2]. (15)
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We also introduce QU-decompositions of ΛF1 and Λ−1F2 by

ΛF1 = Q1U1,

Λ−1F2 = Q2U2. (16)

The matrices Q1 and Q2 have size N ×m and N × (N −m) and are an orthogonal basis
of the subspaces which are spanned by the columns of ΛF1 and Λ−1F2 respectively. The
matrices U1 and U2 have size m×m and (N −m)× (N −m) and are upper triangular
matrices. With these decompositions A is written as

A = F∗D
[

−Q1 | Q2

]

︸ ︷︷ ︸

Q

[
U1 ∅
∅ U2

]

︸ ︷︷ ︸

U

= F∗DQU. (17)

Since the unitary matrix F has condition number one we find

cond(A) ≤ cond(D) cond(Q) cond(U). (18)

3.2 Estimates of the condition numbers

The matrix D = Λ
1/2
G Λ

1/2
H is the product of two diagonal matrices. Hence the eigen-

values of D are the products of the eigenvalues of Λ
1/2
G and Λ

1/2
H . We estimate the

eigenvalues of ΛG by the eigenvalues of Ks in Table 1 and we use the exact eigenvalues
as given in (10). We find

σ1(D)2 = max

(

R| logR|
(

1

2
− N − 1

2π
tan

π

N

)

,
R

2

(
1

2
+

1

2π
tan

π

N

))

,

σN (D)2 = min

(

R| log R|
(

1

2
− N − 1

2π
tan

π

N

)

,
R

N

(
1

2
+

1

2π
tan

π

N

))

,(19)

from which the condition number of D is easily obtained.
The condition number of Q is related to the Kantorovich-Wielandt angle θ (see [14])

according to

cond(Q) =
1

tan(θ/2)
, (20)

where θ is defined as

cos θ := max
x⊥y

|(Qx,Qy)|
‖Qx‖‖Qy‖ . (21)

In Section 3.3 we show that the angle θ is also the angle between the subspaces that are
spanned by the columns of ΛF1 and Λ−1F2. We cannot say a priori whether the angle
between the subspaces is small or close to π/2. In the following theorem we show that in
our case the two subspaces are perpendicular.
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Theorem 1 For the angle θ as defined above, we have cos θ = 0.

Proof. Since Q = [−Q1 | Q2] we can split two orthogonal vectors x and y into
x = [xT

1 ,xT
2 ]T and y = [yT

1 ,yT
2 ]T , such that

(Qx,Qy) = (Q1x1,Q1y1) + (Q2x2,Q2y2)

−(Q1x1,Q2y2) − (Q2x2,Q1y1). (22)

The matrices Q1 and Q2 are orthogonal, which implies that (Q1x1,Q1y1) = (x1,y1)
and (Q2x2,Q2y2) = (x2,y2). Hence the inner product becomes

(Qx,Qy) = (x1,y1) + (x2,y2) − (Q1x1,Q2y2) − (Q2x2,Q1y1). (23)

Because x and y are perpendicular we have (x,y) = (x1,y1) + (x2,y2) = 0. Thus we
obtain

(Qx,Qy) = −(Q1x1,Q2y2) − (Q2x2,Q1y1). (24)
Consider the first inner product on the right-hand side. Recall that Q1 is a basis for the
column space of ΛF1 and Q2 is a basis for the column space of Λ−1F2. Therefore we
can write for ξ1 ∈ R

m and ξ2 ∈ R
N−m

Q1x1 = ΛF1ξ1 =: Λη1, η1 ∈ R(F1),

Q2y2 = Λ−1F2ξ2 =: Λ−1η2, η2 ∈ R(F2). (25)

The inner product of Q1x1 and Q2y2 yields

(Q1x1,Q2y2) =(Λη1,Λ
−1η2) =(η1, η2) =(F1ξ1,F2ξ2) =(FT

2 F1ξ1, ξ2) =0, (26)

since R(F1) ⊥ R(F2). Likewise, for the second inner product on the right-hand side of
(24) we find that (Q2x2,Q1y1) = 0. As a consequence (Qx,Qy) = 0 and with (21)
cos θ = 0. �

Together with (20), Theorem 1 implies that

cond(Q) = 1. (27)
To estimate the condition number of U we will estimate the singular values of U1 and

U2. We observe that

σk(U1) = σk(Q1U1) = σk(ΛF1) ≤ σk(Λ)σ1(F1)

= σk(Λ), k = 1, . . . , m,

σk(U2) = σk(Q2U2) = σk(Λ−1F2) ≤ σk(Λ−1) σ1(F2)

= σk(Λ−1), k = 1, . . . , N − m, (28)

where we used the facts that Qi and Fi have orthogonal columns and singular values 1.
The estimates for singular values of product matrices follow from [15, p. 30]. Further-
more, with F1 = Λ−1Q1U1 and F2 = ΛQ2U2 we obtain

1 = σk(F1) = σk(Λ−1Q1U1) ≤ σ1(Λ
−1)σk(Q1U1)

= σ1(Λ
−1)σk(U1), k = 1, . . . , m,

1 = σk(F2) = σk(ΛQ2U2) ≤ σ1(Λ)σk(Q2U2)

= σ1(Λ)σk(U2), k = 1, . . . , N − m, (29)
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which yields

σk(U1) ≥ 1

σ1(Λ
−1)

= σN (Λ), k = 1, . . . , m,

σk(U2) ≥ 1

σ1(Λ)
= σN (Λ−1), k = 1, . . . , N − m. (30)

With (28) and (30) we have upper and lower bounds for the singular values of U1 and
U2. The set of singular values of U is composed of the singular values of U1 and the
singular values of U2. For the condition number of U we obtain

cond(U) =
max

(
σ1(U1), σ1(U1)

)

min
(
σN (U1), σN (U1)

) ≤ max(σ1(Λ), σ1(Λ
−1))

min(σN (Λ), σN (Λ−1))

=

max

(

σ1(Λ), 1
σN (Λ)

)

min

(

σN (Λ), 1
σ1(Λ)

) = max

(

σ1(Λ)2,
1

σN (Λ)2

)

. (31)

Since Λ is the product of the square roots of ΛG and Λ−1
H , we can derive its singular

values, namely

σ1(Λ)2 = max

(
2πR| logR|

π − (N − 1) tan π/N
,

πR

π + tan π/N

)

,

σN (Λ)2 = min

(
2πR| logR|

π − (N − 1) tan π/N
,

2πR/N

π + tan π/N

)

. (32)

3.3 Angle between subspaces

The angle α between the two subspaces that are spanned by the columns of F1Λ and
F2Λ

−1 is defined as [16]

cosα := max
ξ
1
∈R(F1Λ)

max
ξ
2
∈R(F2Λ

−1)

|(ξ1, ξ2)|
‖ξ1‖‖ξ2‖

. (33)

We will show that this angle α is equal to the Kantorovich-Wielandt angle θ defined in
(21). Recall that the angle θ is found by taking pairs of orthogonal vectors x and y and cal-
culating the smallest angle between their images under Q. The matrix Q consists of two
blocks, and therefore we select two special vectors x and y, namely xT = [xT

1 | 0, . . . , 0]T

and yT = [0, . . . , 0 | yT
1 ]T , where x1 ∈ R

m and y1 ∈ R
N−m. Clearly we have x ⊥ y.

Moreover, we observe that Qx = −Q1x1 and Qy = Q2y1. We substitute this into the
definition of the Kantorovich-Wielandt angle and find

cos θ = max
x1∈Rm

max
y

1
∈RN−m

|(Q1x1,Q2y1)|
‖Q1x1‖‖Q2y1‖

. (34)

Recall that the matrices Q1 and Q2 are an orthogonal basis for the subspaces spanned by
the columns of F1Λ and F2Λ

−1. This means that we can introduce ξ1 ∈ R(F1Λ) and
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ξ2 ∈ R(F2Λ
−1) such that ξ1 = Q1x1 and ξ2 = Q2y1. Then (34) becomes

cos θ = max
ξ
1
∈R(F1Λ)

max
ξ
2
∈R(F2Λ

−1)

|(ξ1, ξ2)|
‖ξ1‖‖ξ2‖

. (35)

This is the definition of the angle between the subspaces. Thus the Kantorovich-Wielandt
angle is equal to the angle between the two subspaces.

4 Applications to the problem matrix

We demonstrate the estimate of the condition number of the BEM system matrix for
several cases. First we look at the two extreme cases: the BVP with purely Dirichlet
conditions (m = N ) and the BVP with purely Neuman conditions (m = 0). Then we
deal with the case in which the boundary BVP has both Dirichlet and Neuman conditions
(0 < m < N ).

4.1 Dirichlet conditions

In the situation m = N we only have Dirichlet conditions on the boundary. In this case
A = −G. The singular values of G are approximated by the eigenvalues of Ks and we
easily obtain an estimate for the condition number of A,

cond(A) ≈ max( 1
2 , | log R|)

min( 1
N , | log R|) . (36)

Figure 2 shows the graph of the condition number of A as a function of radius R. We
perform calculations for N = 8 (red), N = 12 (blue), N = 16 (black), and N = 20
(green), cf [2].

0 0.5 1 1.5 2 2.5 3 3.5 4
10

1

10
2

10
3

R

co
nd

(A
)

N=8
N=12
N=16
N=20

Figure 2: Condition number of A as a function of R when m = N (Dirichlet problem).
Four values of N are plotted: N = 8 (red), N = 12 (blue), N = 16 (black)
and N = 20 (green).
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We observe that for increasing N the condition number also increases. For R = 1 the
condition number becomes infinitely large, which is caused by the factor | log R| in the
denominator in expression (36). This singularity is interesting since it implies that we
cannot cope with circular domains for which the radius equals one. Such a situation often
occurs if we take dimensionless spatial coordinates.

4.2 Neuman conditions

If m = 0 we only have Neuman conditions on the boundary. In this case A = H̃. Since
all the eigenvalues of H̃ are known, we easily determine the condition number of A,

cond(A) =
π + tan π

N

|π − (N − 1) tan π
N | . (37)

Note that the parameter R is not present in this expression. Therefore the condition num-
ber of A is independent of R. Figure 3 shows the condition number of A as a function of
N . We see that the condition number is asymptotically linearly dependent on N . In the
neighborhood of N = 4 we observe a local maximum in the condition number. This is
caused by the denominator in expression (37), which becomes zero between N = 3 and
N = 4. However, in practical applications N will always be chosen larger than 4.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

N

co
nd

(A
)

Figure 3: Condition number of A as a function of N when m = 0 (Neuman problem).

4.3 Mixed boundary conditions

For ease of notation let the number of boundary elements N be even. We choose m =
N/2, which means that there are as many elements with Dirichlet conditions as there are
elements with Neuman conditions. We use a first order approximation for tanπ/N to
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approximate the largest and smallest singular values of the matrices D and Λ as given in
(19) and (32). We find

σ1(D)2 ≈ R

4N
max

(
2| logR|, N + 1

)
,

σN (D)2 ≈ R

2N
min

(

| log R|, 1 +
1

N

)

,

σ1(Λ)2 ≈ RN max
(

2| log R|, 1

N + 1

)

,

σN (Λ)2 ≈ 2RN min
(

| log R|, 1

N(N + 1)

)

. (38)

Choosing R = 1/2 we get

cond(D) ≈
√

N + 1

2 log 2
,

cond(U) ≤ N + 1, (39)

which gives the following estimate for the condition number of A,

cond(A) ≤ 1√
2 log 2

(N + 1)3/2. (40)
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nd
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exact
estimate

Figure 4: Condition number of A on a logarithmic scale as a function of N with R = 1/2
and m = N/2. The blue line is the estimate whereas the red dots give the exact
condition number for several values of N .

In Figure 4 we show this estimate for cond(A) on a logarithmic scale. The blue line gives
the estimate as a function of N , whereas the red dots gives the exact value of cond(A)
for several values of N . Thus we obtain an upper bound for the condition number of the
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system matrix. Note that the data shows a linear behavior in N while our estimate is of
order N3/2. At a later point in this paper we elaborate on this difference and its cause.

Figure 5 gives the dependency of the condition number on R and its estimate. We typ-
ically choose N = 12 and m = 6, i.e. again as many elements with Dirichlet conditions
as elements with Neuman conditions. Again we obtain an upper bound for the condition
number of A.
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Figure 5: Condition number of A as a function of R with N = 12 and m = 6. The
blue line is the estimate whereas the red line gives exact values of the condition
number for several values of R.
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Figure 6: Condition number of A as a function of m with N = 64 and R = 1/2.

The expressions for the singular values of D and Λ do not contain the parameter m.
Therefore the estimate for the condition number A is independent of m. The actual
condition number does depend on m. In other words our estimate is an upper bound for
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all possible choices of m. Figure 6 shows the condition number as a function of m. We
choose R = 1/2, N = 64, and m ranges from 0 to N . We observe that for m = 0,
i.e. the Neuman problem, the condition number is largest. The lowest condition number
is obtained when m = 1, which is the situation in which one element has a Dirichlet
condition and all the other elements have Neuman conditions. For a large range of values
of m, 10 < m < N , the condition numbers are comparable. For m = N , the Dirichlet
problem, the condition number is considerably lower compared to m = N − 1.
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Figure 7: Condition number of D as a function of N with R = 1/2 and m = N/2. The
blue line is the estimate whereas the red dots give the exact value for several
values of N .
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Figure 8: Condition number of U as a function of N , with R = 1/2 and m = N/2. The
blue line is the estimate whereas the red dots give the exact value for several
values of N .

Figure 7 shows the condition number of D as a function of N . The red dots represent
the exact condition number for several values of N . The blue line gives the approximation
as given in (39). We observe that the condition number of D is approximated very well.
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Hence the difference that we observed between estimate and exact value of cond(A) is
not caused by a poor estimate of cond(D).

We also plot the condition number of U and its approximation in Figure 8. Again we
observe a very good correspondence between the exact value of cond(U) and the approx-
imation. Hence the difference between the estimate and the exact value of cond(A) is not
caused by a poor estimate of cond(U).

To recapitulate, we decompose the matrix A into a product of four matrices and derive
that cond(A) ≤ cond(D)cond(U). We approximate the condition numbers of D and U

very well. Unfortunately the estimate of the condition number of A is too large. Clearly
the reason for this is that

‖DU‖ ≤ ‖D‖‖U‖. (41)

This occurs in (18), where we approximate the condition number of A by the product of
the condition numbers of D, Q and U.

5 Conclusion

The previous section shows that we find an upper bound for the condition number of the
system matrix A. It demonstrates that when R = 1/2 the condition number is at most
N3/2, indicating that the matrix is well-conditioned. The same is true if R is not too close
to one. Thus, the boundary element method applied to the Laplace equation on a circle
with mixed boundary conditions leads to a well-conditioned linear system of algebraic
equations. It is not a priori clear whether the system matrix will be well-conditioned. The
matrix is constructed from two blocks, the columns of each block representing a subspace.
In principle, nothing guarantees us that these two subspaces are orthogonal. In fact, when
the angle between these subspaces is very small, the condition number of the system
matrix is very large. However, we prove that the two subspaces are perpendicular, leading
to a well-conditioned matrix. We restrict ourselves to a simple case, but our research could
be extended to more complex geometries, for instance a square or rectangular geometry.

References

[1] Wendland W.L., Christiansen S., On the condition number of the influence matrix
beloning to some first kind integral equations with logarithmic kernel, Appl. Anal.
21: 175–183, 1986.

[2] Christiansen S., Condition number of matrices derived from two classes of integral
equations, Math. Meth. in the Appl. Sci. 3: 364–392, 1981.

[3] Christiansen S., On two methods for elimination of non-unique solutions of an inte-
gral equation with logarithmic kernel, Appl. Anal. 13: 1–18, 1982.

[4] Christiansen S., Hansen P.C., The effective condition number applied to error analy-
sis of certain boundary colocation methods, J. Comp. Appl. Math. 54: 15–35, 1994.

W. Dijkstra and R.M.M. Mattheij / Electronic Journal of Boundary Elements, Vol. 4, No. 2, pp. 67-81 (2006)

80



[5] Christiansen S., Saranen J., The conditioning of some numerical methods for the
first kind boundary integral equations, J. Comp. Appl. Math. 67: 43–58, 1996.

[6] Amini S., On boundary integral operators for the Laplace and the Helmholtz equa-
tions and their discretisations, Engng. Anal. Boundary Elem. 23: 327–337, 1999.

[7] Steinbach O., Wendland W.L., The construction of some efficient preconditioners in
the boundary element method, Adv. Comput. Math. 9: 191–216, 1998.

[8] McLean W., Tran T., A preconditioning strategy for boundary element galerkin
methods, Numer. Methods Partial Differential Eq. 13: 283–301, 1997.

[9] Rodin G.J., Steinbach O., Boundary element preconditioners for problems defined
on slender domains, SIAM J. Sci. Comput. 24: 1450–1464, 2003.

[10] Steinbach O., Wendland W.L., On C. Neumann’s method for second-order elliptic
systems in domains with non-smooth boundaries, J. Math. Anal. Appl. 262: 733–
748, 2001.

[11] Chen J.T., CHiu Y.P., On the pseudo-differential operators in the dual boundary
integral equations using degenerate kernels and circulants, Engng. Anal. Boundary
Elem. 26: 41-53, 2002

[12] Becker A.A., The boundary element method in engineering, 1st ed., McGraw-Hill,
London, 1992.

[13] Davis J., Circulant matrices, 1st ed., John Wiley and Sons, New York, 1979.

[14] Gustafson K., The geometrical meaning of the Kantorovich-Wielandt inequalities,
Lin. Alg. Appl. 296: 143–151, 1999.

[15] Gohberg I.C., Kreı̌n M.G., Introduction to the theory of linear nonselfadjoint opera-
tors, 1st ed., Nauka, Moscow, 1969.

[16] Björck A., Golub G.H., Numerical methods for computing angles between linear
subspaces, Math. Comp. 27: 579–594, 1973.

W. Dijkstra and R.M.M. Mattheij / Electronic Journal of Boundary Elements, Vol. 4, No. 2, pp. 67-81 (2006)

81


