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Abstract 

 
This article considers weakly singular, singular and hypersingular integrals, which arise 
when the boundary integral equation (BIE) methods are used to solve problems in science 
and engineering. For their regularization, an approach based on the theory of distribution 
and application of the Green theorem has been used. The expressions, which allow an 
easy calculation of the weakly singular, singular and hypersingular integrals, have been 
constructed. Such approach may be easily generalized and applied to the calculation of 
multidimensional integrals with singularities of various types. 
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1. Introduction 
 
In [1] it was shown that divergent integrals and integral operators with divergent kernels 
are widely used in mathematics, applied science and engineering. Their correct 
mathematical interpretation has been done in terms of the theory of distributions 
(generalized functions) by Gel'fand and Shilov in [3]. Also interesting interpretation of 
the divergent integrals has been given by Courant in [2]. In mathematics weakly singular 
(WS) and singular integrals and integral operators with such kernels have a well-
established theoretical basis [7]. For example, the weakly singular integrals are 
considered as improper integrals, the singular integrals are considered in the sense of 
Cauchy principal value (PV).  The hypersingular integrals had been considered by 
Hadamard as finite part integrals (FP) in [6]. The theory of distributions provides a 
unified approach for the study of the divergent integrals and integral operators with 
kernels containing different kind of singularities. Mathematical methodology of this 
approach is well known and widely discussed in the mathematical literature, but until 
recently, it had not been used for  the numerical solution of the BIE with divergent 
integrals. One-dimensional (1-D) and multi-dimensional divergent integrals can also be 
calculated using the same method. For example, two-dimensional (2-D) hypersingular 
integrals that arise from the BIE solution of the 3-D static and dynamic problems of 
fracture mechanics have been considered in [9,10].  
     In the present paper, the approach for the divergent integral regularization based on 
the theory of distribution and Green theorem is developed. Equations that enable easy 
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calculation of the weakly singular, singular and hypersingular integrals over any convex 
polygonal area are presented here.  
 
 
2. Boundary integral equations 

 
Let V be an open bounded subset of the three-dimensional Euclidean space R3 with a 1,0C  
Lipschitzian regular boundary ∂V. The region V  is occupied by an elastic body in its 
undeformed state. The physical processes in the region V  are descried by the vector 
function iu  that in general depends on the spatial coordinate x  and time t . Time 
dependent problems may be considered in the time domain, Laplace transformed domain 
and the frequency domain.  
     In [5, 8] it was shown that the BIE that appears in many engineering applications may 
be written, on a smooth boundary,  in the following form 
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with ∫ •−∗•=•
V

ijji dVUbu ),(),(),(* yxxy  , ∫ •∗•=•
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Here •  indicates t  for the time domain, k for the Laplace transformed domain, ω  for the 
frequency domain formulations and zero for the statically problems, respectively. The 
plus and minus signs in (1) are used for the interior and exterior problems, respectively. 
Sign ∗  indicates the convolution,  

∫
ℑ

−=∗ τττ dtgftgtf )()()()( , 

in the time domain BIE formulation and a multiplication of functions otherwise. The 
summation convention is used in (1) for repeated indices. In the case of scalar problem 
indices are omitted.  
     The kernels ),( •− yxijU , ),,( •yxijW , ),,( •yxijK  and ),,( •yxijF  in the BIE (1) 
are fundamental solutions for the differential equations that correspond to the problem 
under consideration. The expressions of these kernels are well known and can be found in 
most books on the BEM (see also [4, 5]). As it is well known the fundamental solutions 
for systems of differential equations of the second order have the same singularity when 

xy →  (see for references [2, 4, 5]). In the 2-D case we have 

2-1-1 ),),),) ( ,(,(,)(( −→→→→− rrrrln jijijiji FKWU yxyxyxyx , 
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where 2
22

2
11 )()( yxyxr −+−=  is a distance between the points x and y.  

In the 3-D case we have 
3-2-2-1 ),),),) ( ,(,(,( −→→→→− rrrr jijijiji FKWU yxyxyxyx , 

where 2
33

2
22

2
11 )()()( yxyxyxr −+−+−= . 

The kernels )( yx −jiU  are weakly singular (WS), the kernels ),( yxjiW  and ),( yxjiK  

are singular and the kernels ),( yxjiF  are hypersingular. The integrals with such kernels 
are divergent and they can not be calculated using Gauss formulas for example. These 
integrals need a special consideration in order to have some mathematical sense.  
 

3. Divergent integrals and distributions 
 
We will consider the concept of the definite integral based of the theory of distribution. 
To clarify consideration we will study 1-D divergent integrals first. Then we will extend 
definitions and methods for 2-D divergent integrals. 
 
3.1 1-D divergent integrals 
 
Let a hypersingular function of one variable )(xf  be defined in the region 

],[ aaVx −=∈ . All its singularities are concentrated in the smaller region 

VV ⊂−= ],[ εεε  so that, in the region ],[],[/0 aaVVV εεε ∪−−== , the function )(xf  
is regular. Let us consider a definite integral  

∫
−

=
ε

ε

dxxfI )(0  

and inquire the meaning of 0I  for this hypersingular function, which cannot be answered 
by the classical approach. In order to consider this integral in the sense of the distribution, 
we introduce a function )(xg , such that  

k

k

dx
xgdxf )()( = . 

This equation has to be considered in the classical sense in the region 0V  and in the sense 
of a distribution in the region εV . For details one can refer to [2]. We introduce the test 
function )()( RCx ∞∈ϕ , such that 1)( =xϕ , εVx∈∀  and 0)( =xϕ , Vx∉∀ . Function 

)(xϕ  is extended arbitrary to the region 0V . In this case, its derivatives are equal to zero 

at the end points of the regions εV  and V  , i.e., 
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    We consider the scalar product 
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Since the derivatives of the test function )(xϕ  is equal zero on the boundary 

},{},{0 aaV −∪−=∂ εε  , the integration by parts gives 
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The integration by parts in reverse order for the last integrals leads to the result 
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Taking into account that  
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we will find the finite part of the divergent integral according to Hadamard in the form 
ε
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We can use this equation to calculate weakly singular, singular and hypersingular 
integrals. For the regular functions this is a usual formula from integral calculus which 
connects infinite and finite integrals. Obviously for 1=k  we have  

ax

ax
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a

xgdxxfPF =
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=∫ )()(.. ,                                                         (3) 

which is the well known Leibniz's formula for the definite integral.   
 
3.2  2-D divergent integrals 
 
We will consider now the 2-D divergent integrals in the sense of distribution and find 
analogies for the equations (2) and (3). The symbol 1−∂ k

i  in the multidimensional case 
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may be represented in the form k
ii

k
i ∂∂=∂ −− 11 , were symbol 1−∂ i  is defined as an inverse 

operator for the operator of partial derivative i∂  and also as an indefinite integral 
operator with respect to ix .  
     In the same way as in the 1-D case we consider a hypersingular function )(xf of 2  
variables ),( 21 xx=x  that is defined in the region V∈x . All its singularities are 

concentrated in the region VV ⊂ε  and in the region εVVV /0 =  the function is regular. 
We suppose that the boundaries of the regions V and 0V  satisfy some special conditions 
of smoothness, which are discussed in any standard courses of analysis.  Let as consider a 
definite 2-D integral  

∫=
εV

dfI xx)(0 . 

Once again the classical approach can not provide the meaning of 0I  in the 2-D case. To 
consider this integral in the sense of the distribution, introduce the function )(xg , such 
that  

)()( xx gf kΔ= , 

where kkk 2
2

2
1 ∂+∂=Δ , which is called the k  – dimensional Laplace's operator.  

     This representation of the function )(xf  has to be considered in the classical sense in 

the region 0V  and in the sense of distribution in the region εV . We also introduce test 
function )()( 2RCx ∞∈ϕ , such that 1)( =xϕ , εV∈∀x  and 0)( =xϕ , V∉∀x . Function 

)(xϕ  is extended arbitrary to the region 0V . In this case, its derivatives are equal to zero 

at the boundary of the regions εV  and V , i.e., 

0)( =Δ xϕk  , VV ∂∪∂∈ εx . 

We consider the scalar product 
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Since the derivatives of the test function )(xϕ  is equal zero on VVV ∂∪∂=∂ ε0 , the 
application of the Green theorem gives 
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Here, iin n ∂=∂  is the normal derivative on the surface with respect to x  and )(xin  is a 
unit normal to the surface. The integration by parts in reverse order for the last integrals 
above leads to the result 
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we will find the finite part of the divergent integral according to Hadamard in the form 
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or, for 1=k , we get 
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4. Regularization of divergent integrals 
We will apply here the approach demonstrated in the previous section to the 
regularization of wide class of divergent integrals which arise in engineering applications, 
especially in the BIE methods.   
 
4.1  1-D representation  
 
Let us consider the function )(xf  in the form  
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    Let us consider the scalar product  
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The test function here is )()( VCx ∞∈ϕ . In contrast to Section 3, no boundary conditions 
are implied. Then using the integration by parts k  times we obtain 
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Operations of differentiation and integration here are considered in the sense of 
distribution.  As a result we obtain a formula for the  calculation of 1-D divergent 
integrals in the sense of Hadamard's finite part in the form 
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4.2 2-D representation  
 
Let us consider the function )(xf  in the form 
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f 1)( =x . 

It can be represented as  
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The test function here is )()( VC∞∈xϕ . In contrast to Section 3, no boundary conditions 
are implied. Then using the Green theorem k  times we obtain 
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Operations of differentiation and integration here are considered in the sense of 
distribution and we obtain a formula for the calculation 2-D divergent integrals in the 
sense of Hadamard's finite part in the form 
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Notice that if the integral on the right hand side is still divergent, then k  has to be 
increased.  
 
Conclusions 
 
General formulas for the regularization of the divergent integrals of the type  

∫
V

m dV
r

)(xϕ  

for 1-D and 2-D have been derived. The approach based on the theory of distribution has 
been used. These formulas allow us to calculate the weakly singular, singular and 
hypersingular integrals in a unified fashion. This method may be easily extended to 
calculate various multidimensional divergent integrals.  
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