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Abstract
Basic equations with detailed derivation for the two-dimensional static fundamen-
tal solutions are presented for the general anisotropic solids. The displacement,
stress and traction solutions for the line force and dislocation fundamental solu-
tions are given along with FORTRAN 90 computer codes.

1 Introduction

Two-dimensional fundamental solutions for the general anisotropic elastic solids,
defined by 21 elastic constants, are derived. The generalized plane strain is
assumed. After a short review of Stroh’s complex variable formalism for 2D
anisotropic elasticity (Stroh [1, 2], Ting [3], Suo [4] and Ni and Nemat-Nasser
[5]) the fundamental solutions for the line force and line dislocation are derived
following Denda [6] and Denda and Marante [7]. The explicit form of the funda-
mental solutions are given for the displacement, traction and stress components for
the line force and dislocation. Brief description of the downloadable FORTRAN
90 codes is given.

2 Basic Equations

For the generalized plane strain anisotropic elasticity problems considered the
displacement u = {u1, u2, u3}T depends only on two coordinates x1 and x2. This
is the case if the geometry and the loading do not vary in the x3-axis (i.e., out-of-
plane) direction. If the anisotropic material has a symmetry plane parallel to the
x1x2-plane, then the in-plane (u1 and u2) and the out-of-plane (u3) deformations
become uncoupled. Otherwise, full coupling exists between two deformations.
The latter is assumed in this paper including the former as a special case. The
equilibrium equation, in the absence of the body force, is given in a vector form
by

∂σ1

∂x1
+

∂σ2

∂x2
= 0, (1)

where σ1 = {σ11, σ12, σ13}T and σ2 = {σ21, σ22, σ23}T are the stress vectors. In
describing the field variables we replace a pair of suffices ij by a single suffix M
following the convention (11 → 1), (22 → 2), (33 → 3), (23 → 4), (31 → 5,)
(12 → 6). The non zero strain components are given by

e1 =
∂u1

∂x1
, e2 =

∂u2

∂x2
, e4 =

∂u3

∂x2
, e5 =

∂u3

∂x1
, e6 =

∂u2

∂x1
+

∂u1

∂x2
. (2)
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The strain-stress relations are given by

eM =
6∑

N=1

SMN σN (M,N = 1,2,4,5,6), (3)

where SMN is the reduced compliance defined by

SMN = sMN − (sM3 s3N )/s33 (M,N = 1,2,4,5,6) (4)

in terms of the compliance sij (i, j = 1, 2, 3, 4, 5, 6). In this paper no summation
convention is used for repeated indices unless mentioned otherwise. The compati-
bility equations are given by

∂2e2

∂x2
1

+
∂2e1

∂x2
2

− ∂2e6

∂x1∂x2
= 0,

∂e4

∂x1
− ∂e5

∂x2
= 0. (5)

If we introduce a real-valued stress function vector φ = {φ1, φ2, φ3}T such that

σ1 = − ∂φ

∂x2
, σ2 =

∂φ

∂x1
, (6)

then the equilibrium equation (1) is automatically satisfied.
Lekhnitskii [8] and Eshelby et al. [9] have shown that the solution of the

generalized plane strain problem can be represented by three functions f1(z1),
f2(z2), f3(z3), each of which is analytic in its argument zα = x1+pαx2. Here pα are
three distinct complex numbers: roots of the sixth-order polynomial characteristic
equation (7). The arguments zα = x1 +pαx2(α = 1, 2, 3) are called the generalized
complex variables. Lekhnitskii [8] has assumed the stress function vector of the
form

φ = lf(x1 + px2),

where l = {L1, L2, L3}T , which is substituted in the compatibility equations (5).
This results in the sixth-order characteristic equation in p

d(4)(p) d(2)(p)− d(3)(p) d(3)(p) = 0, (7)

where
d(4)(p) = p4S11 − 2p3S16 + p2(2S12 + S66)− 2pS26 + S22,

d(3)(p) = p3S15 − p2(S14 + S56) + p(S25 + S46)− S24,

d(2)(p) = p2S55 − 2pS45 + S44.

Lekhnitskii [8] has shown that (7) has no real roots and has three pairs of conjugate
complex roots p1, p1, p2, p2, p3, p3. The imaginary part of pα (α = 1, 2, 3) is
assumed, without loss of generality, positive. It is also assumed that the three
roots p1 , p2, p3 are distinct. In the numerical treatment the coincident roots can
be made distinct by slightly perturbing compliance coefficients. The matrix

L = [l1, l2, l3, ] =

 −p1L21 −p2L22 −p3l3L33

L21 L22 l3L33

l1L21 l2L22 L33

 , (8)
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where

lα =
d(3)(pα)
d(2)(pα)

(α = 1, 2) l3 =
d(3)(p3)
d(4)(p3)

, (9)

is obtained from the compatibility equations. The subsequent integration of the
strain components, to get the displacement components, introduces the matrix

A = [a1,a2,a3] , (10)

with

aα =

 A1α

A2α

A3α

 =

 s16 − s11pα, s12, s14 − s15pα
s26−s21pα

pα
, s22

pα
, s24−s25pα

pα

s56 − s51pα, s52, s54 − s55pα

 L1α

L2α

L3α

 . (11)

Eshelby et al. [9] have assumed the displacement vector of the form u =
af(x1 + px2), where a = {A1, A2, A3}T , which is substituted in the equilibrium
equation (1) written in terms of the displacement. This leads to another sixth-
order polynomial characteristic equation. These two approaches are equivalent.
For the BEM formulation Denda [6] and Denda and Marante [7] have adopted
Lekhnitskii’s approach which gives the explicit expression for the elements of the
A matrix in terms of those of L matrix. Notice that L and A given above include
the case when the in-plane and out-of-plane deformations are decoupled. In this
case (s14 = s15 = s24 = s25 = s46 = s56 = 0) we have

L =

 −p1L21 −p2L22 0
L21 L22 0
0 0 L33

 , (12)

and

A =

 (s11p1
2 − p1s16 + s12)L21 (s11p2

2 − p2s16 + s12)L22 0
(s21p1 − s26 + s22

p1
)L21 (s21p2 − s26 + s22

p2
)L22 0

0 0 (s54 − s55p3)L33

 .

(13)
Note that for each characteristic root pα we can determine vectors lα and aα up
to an arbitrary multiplying factor. The solution may be normalized by setting

L21 = L22 = L33 = 1 (14)

in (8) and (12). The alternative normalization, adopted in this paper, is based on
the relations [1, 2]

LT A + AT L =

 2
∑3

i=1 Li1Ai1 0 0
0 2

∑3
i=1 Li2Ai2 0

0 0 2
∑3

i=1 Li3Ai3

 ,

LT Ā + AT L̄ = 0, (15)
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where 0 is the 3×3 zero matrix and a bar and the superscript T indicate the com-
plex conjugate and the transpose, respectively. The normalization is introduced
by setting

2
3∑

i=1

LiαAiα = 1 (α = 1, 2, 3). (16)

This gives the orthogonality relations

LT A + AT L = I = L̄T Ā + ĀT L̄

LT Ā + AT L̄ = 0 = L̄T A + ĀT L, (17)

where I is the 3×3 identity matrix. A through investigation on these matrices, Aiα

and Liα, has been given by Stroh [1, 2], Ting [3], Suo [4] and Ni and Nemat-Nasser
[5].

Using Aiα and Liα we can represent the displacement ui, stress σij and the
stress function φi in the form

ui(z) = 2<

[
3∑

α=1

Aiαfα(zα)

]
, φi(z) = 2<

[
3∑
α

Liαfα(zα)

]

σ2i(z) = 2<

[
3∑

α=1

Liαf ′α(zα)

]
, σ1i(z) = −2<

[
3∑

α=1

Liαpαf ′α(zα)

]
,(18)

where ( )′ indicates the derivative with respect to the argument of the function
and < is the real part of a complex variable.

3 Fundamental Solutions

3.1 Derivation

Consider a point force and a dislocation of magnitudes r = {r1, r2, r3}T and b =
{b1, b2, b3}T , respectively located at ξ = η1 + iη2 in the z-plane and introduce an
arbitrary circuit Γ around ξ, which induces an additional circuit Γα in each of the
zα-plane as shown in Figure 1. We determine the complex potential function vector
{f1(z1), f2(z2), f3(z3)}T , such that the force resultant and the displacement jump
around the circuit Γ are −r and b, respectively. First notice that the resultant
force is obtained by integrating the traction tk around the circuit to get

rk =
∫

Γ

tkds =
∫

Γ

σjknjds =
∫

Γ

(σ1kn1 + σ2kn2)ds

=
∫

Γ

{(
∂φk

∂x2

)
dx2

ds
+

(
∂φk

∂x1

)
dx1

ds

}
ds

= − [φk]FI , (19)

M. Denda / Electronic Journal of Boundary Elements, Vol. 3, No. 1, pp. 14-24 (2005)

17



Γ

ξ

ξ0

ξα

Γα

α

ξα0

F
I

Figure 1: Physical (z) and mapped (zα;α = 1, 2, 3) planes. The source point ξ is
mapped to ξα. Images ξ0

α(α = 1, 2, 3) of the branch line point ξ0 are used to define
the branch cuts of log(zα − ξα) in the mapped planes.

where the circuit starts at I and ends at F = I. Since the logarithmic function is
the only possible function that satisfies the force resultant and displacement jump
along the prescribed circuit Γα in the zα-plane, let

fα(zα) =
Cα

2πi
ln(zα − ξα) (α = 1, 2, 3), (20)

where ξα = η1 + pαη2 and Cα is determined below. Note that there is no sum on
α. Substituting the complex potential function vector (20) into the displacement
and stress function equations (18) we arrive at,

φk = 2<
3∑

α=1

Lkα
Cα

2πi
ln(zα − ξα),

uk = 2<
3∑

α=1

Akα
Cα

2πi
ln(zα − ξα). (21)

Calculate the force resultant and the displacement jump around the circuit Γ and
set them to −r and b, respectively, to get

−rk = −2<

[
3∑

α=1

Lkαfα(zα)

]F

I

= −2<

[
3∑

α=1

LkαCα

]
= −

3∑
α=1

[
LkαCα + LkαCα

]
,
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bk = −2<

[
3∑

α=1

Akαfα(zα)

]F

I

= 2<

[
3∑

α=1

AkαCα

]
=

3∑
α=1

[
LkαCα + LkαCα

]
,(22)

the component for of which is given by

A11 A12 A13 A11 A12 A13

A21 A22 A23 A21 A22 A23

A31 A32 A33 A31 A32 A33

L11 L12 L13 L11 L12 L13

L21 L22 L23 L21 L22 L23

L31 L32 L33 L31 L32 L33





C1

C2

C3

C1

C2

C3


=



b1

b2

b3

r1

r2

r3


. (23)

Pre-multiplying the left and right sides of equation (23) by the matrix shown below
to get [

LT AT

L
T

A
T

] [
A A
L L

]{
C
C

}
=

[
LT AT

L
T

A
T

] {
b
r

}
, (24)

the expansion of which gives[
LTA + ATL LTA + ATL
L

T
A + A

T
L L

T
A + A

T
L

] {
C
C

}
=

{
LTb + ATr
L

T
b + A

T
r

}
. (25)

Since the matrix in the left hand side of (25) is a unit matrix, due to the orthog-
onality relations (17), this equation can be readily solved to get

Cα =
3∑

k=1

(Lkαbk + Akαrk) (α = 1, 2, 3), (26)

which can be substituted into (20) to obtain

fα(zα) =
1

2πi
ln(zα − ξα)

3∑
k=1

(Lkαbk + Akαrk) (α = 1, 2, 3). (27)

It should be noted that there is no sum on α.
The displacement and stress contributions due to the line force and line dislo-

cation are given by substituting (27) into (18) to get

ui(z) = <

{
1
πi

3∑
α=1

Aiα ln(zα − ξα)
3∑

k=1

(Lkαbk + Akαrk)

}
(28)

and

σ1i(z) = −<

{
1
πi

3∑
α=1

pαLiα
1

zα − ξα

3∑
k=1

(Lkαbk + Akαrk)

}
,

σ2i(z) = <

{
1
πi

3∑
α=1

Liα
1

zα − ξα

3∑
k=1

(Lkαbk + Akαrk)

}
. (29)
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The traction contribution is calculated by the stress formulas in (29) and the
relation ti = σjinj to get

ti(z) = <

{
1
πi

3∑
α=1

(−pαn1 + n2)Liα
1

zα − ξα

3∑
k=1

(Lkαbk + Akαrk)

}
. (30)

3.2 Explicit Formulas

3.2.1 Line Force

Consider a line force in xk direction applied at (η1, η2). The the displacement
component in the xi direction at (x1, x2), denoted by Gik(x1, x2; η1, η2), is given
from (28) by

Gik(x1, x2; η1, η2) = = 1
π

3∑
α=1

AiαAkα ln(zα − ξα), (31)

where = indicates the imaginary part. The traction component in the xi direction
at (x1, x2), denoted by Hik(x1, x2; η1, η2), is given from (30) by

Hik(x1, x2; η1, η2) = = 1
π

3∑
α=1

(−pαn1 + n2)LiαAkα
1

zα − ξα
. (32)

The corresponding stress component σij at (x1, x2) is denoted by Sijk(x1, x2; η1, η2)
and given, from (29), by

S1ik(z) = − 1
π
=

{
3∑

α=1

pαLiαAkα
1

zα − ξα

}
,

S2ik(z) =
1
π
=

{
3∑

α=1

LiαAkα
1

zα − ξα

}
. (33)

3.2.2 Line Dislocation

Consider a line dislocation at (η1, η2) with the unit Burgers vector in xk direction.
The resulting displacement component in the xi direction at (x1, x2), denoted by
Pik(x1, x2; η1, η2), is given from (28) by

Pik(x1, x2; η1, η2) = = 1
π

3∑
α=1

AiαLkα ln(zα − ξα). (34)

The traction component in the xi direction at (x1, x2), denoted by Qik(x1, x2; η1, η2),
is given from (30) by

Qik(x1, x2; η1, η2) = = 1
π

3∑
α=1

(−pαn1 + n2)LiαLkα
1

zα − ξα
. (35)
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The corresponding stress component σij at (x1, x2) is denoted by Tijk(x1, x2; η1, η2)
and given, from (29), by

T1ik(x1, x2; η1, η2) = − 1
π
=

{
3∑

α=1

pαLiαLkα
1

zα − ξα

}
,

T2ik(x1, x2; η1, η2) =
1
π
=

{
3∑

α=1

LiαLkα
1

zα − ξα

}
. (36)

4 Computer Codes

Variables used by the line force and dislocation are listed in Table 1. Subroutines
for the line force and line dislocation are listed in Tables 2 and 3. FORTRAN 90
codes and sample input/output files accompany this paper.

4.1 Normalization used

A dimensional quantity q is normalized by its reference value q0 to define its
normalization q̃ = q/q0. We select the reference values for the stress and strain
to be σ0 = 108 (N/m2) and ε0 = 10−3. Other reference values are determined
such that the normalized governing equations remain exactly the same form as
the original equations. These are s0 = 10−11 (m2/N) for the compliance and
u0 = ε0x0 (m) for the displacement, where x0 is the characteristic length of the
problem. All variables in the codes are normalized and they have magnitudes of
order one. To recover the dimensional quantities just multiply the numerical results
by the reference values. For example, Gik = u0G̃ik (Pik = u0P̃ik), Hik = σ0H̃ik

(Qik = σ0Q̄ik) and Soik = σ0S̃oik (Toik = σ0T̃oik), where quantities with tildes (˜)
are numerical values obtained by the codes.

4.2 Branch of logarithmic functions

For the line dislocation, the branch line of ln(z−ξ) (in the physical plane) coincides
with the slip line, which is assumed to be straight. Given the dislocation at the
source point ξ (in the physical plane), the straight slip line is defined by specifying
another arbitrary point, ξ0 (called the branch line point), on this line as shown
in Figure 1. The slip line is given by a line emanating from ξ and extending to
and past ξ0. The logarithmic function ln(zα− ξα) in each of the mapped zα-plane
(α = 1, 2, 3) is defined as follows. First, get the image, ξ0

α, of the branch line point
ξ0 (Figure 1). Next, calculate the principal value argument of ξ0

α − ξα, which is a
line from the source ξα to the branch line point ξ0

α in the mapped zα-plane. Set
this value as the maximum, upang(ia), of the angular range so that

upang(ia)− π < arg(zα − ξα) ≤ upang(ia), (37)

M. Denda / Electronic Journal of Boundary Elements, Vol. 3, No. 1, pp. 14-24 (2005)

21



where the minimum is given by upang(ia)−π. For the line force we use the principal
value of the logarithm so that upang(ia) is always set to π and it is not necessary
to specify ξ0.

4.3 Tips

• For materials, such as isotropic solids, the characteristic roots are not dis-
tinct. Modify the compliance coefficients slightly to make these roots dis-
tinct.

• Use the compliance with the original dimension. The code will divide them
by 10−11m2/N for normalization so that the actual values used in computa-
tion is of the order of one.

• Subroutine CHARACEQN uses MSIMSL (IMSL for COMPAC FORTRAN) to
get characteristic roots of polynomial equations. Use other polynomial roots
solver subroutine if MSIMSL is not available and please send the subroutine
to the author (denda@jove.rutgers.edu) for future revision.
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Variable Type Dimension Description
t real (21) 3D compliance
z real (2) observation point
n real (2) unit normal
xi real (2) source point
xi0 real (2) branch cut point∗

s real (15) reduced compliance
p complex (3) characteristic roots
a complex (3,3) A matrix
l complex (3,3) L matrix

za complex (3) zα

xia complex (3) ξα

upang real (3) upper angles of logarithmic functions∗

g real (3,3) Gik (Pik for line dislocation)
h real (3,3) Hik (Qik for line dislocation)

stress real (2,3,3) Soik (Toik for line dislocation)

Table 1: FORTRAN variables used for line force and dislocation. Double precision
is used for real and complex. ∗Line force subroutines do not use xio and upang.

Subroutine
Argument

DescriptionIn Out
Input t, z, n, xi Input 3D compliance &

source/observation points data
REDCOMPLIANCE t s Reduced compliance

CHARACEQN s p Characteristic roots
LACOEF s, p l, a L and A matrices

GENCOMPVAR z, xi, p za, xia Generalized complex variables
GMAT za, xia, a, l g Gik

HMAT za, n, xia, a, l, p h Hik

SMAT za, xia, a, l stress Soik

WriteGHS g, h, stress Write results

Table 2: Subroutines for the line force.
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Subroutine
Argument

DescriptionIn Out
Input t, z, n, xi, xi0 Input 3D compliance &

source/observation points data
REDCOMPLIANCE t s Reduced compliance

CHARACEQN s p Characteristic roots
LACOEF s, p l, a L and A matrices

GENCOMPVAR z, xi, xi0, p za, xia, upang Generalized complex variables
PMAT za, xia, upang, a, l g Pik

QMAT za, n, xia, a, l, p h Qik

TMAT za, xia, a, l stress Toik

WriteGHS g, h, stress Write results

Table 3: Subroutines for line dislocation.
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