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Abstract
The numerical Green’s function technique for an infinite isotropic domain with
multiple cracks is developed. The singularities considered are the line force and
dislocation. The Green’s function is decomposed into the singular and the image
terms. To obtain the image term we represent the crack opening displacement
(COD) by the dislocation dipole distribution, embed the

√
r crack tip behavior,

and integrate the resulting singular/hyper-singular integrals analytically. The re-
sulting whole crack singular element (WCSE) consists of multiple independent
crack opening modes and is strictly algebraic with the correct crack tip singular
behavior but the magnitude for each mode is unknown. They are determined to
give the negative of the crack surface traction induced by the singular term. Ex-
tensive error analysis is performed for the line force and dislocation in an infinite
domain with a single crack to identify the region where, when these singularities
are placed, the solution achieves high accuracy. Following the guideline set by the
error analysis, numerical Green’s functions for a few multiple crack configurations
are obtained for the line force and dislocation.

1 Introduction

The fundamental solutions, such as for the line force and dislocation, are defined
in an infinite homogeneous body and their main characteristic is the singularity.
When defects (such as cracks and holes) and inhomogeneities (such as inclusions)
are introduced the fundamental solutions do not satisfy their required bound-
ary conditions for the defects any more and additional terms are needed if these
boundary conditions are enforced. The fundamental solution augmented by the
additional image term that satisfy the required boundary conditions is called the
Green’s function. The fundamental solutions considered in this paper are for the
line force and dislocation. These fundamental solutions serve as the essential build-
ing block for the solutions of the linear elastic problems by the boundary element
method (BEM). Given these fundamental solutions, we establish a technique to
determine their Green’s functions numerically when multiple cracks are present in
two-dimensional isotropic solids. Such Green’s functions are called the numerical
Green’s functions by Telles et al. [1, 2, 3]

The majority of the Green’s functions are analytical and are concerned about
the simplest defect/inhomogeneity geometries possible such as the single center
crack(Snider and Cruse [4], Cruse [5], Clements and Haselgrove [6]) or interface
crack(Berger and Tewary [7], Yuuki and Cho [8]), the single elliptical hole (Mor-
jaria and Mukherjee [9], Ang and Clements [10], Kamel and Liaw [11], Hwu and
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Yen [12], Denda and Kosaka [13]), and the half-plane/bimaterial domain (Telles
and Brebbia [14], Meek and Dai [15], Dumir and Mehta [16], Pan et al. [17], Berger
[18], Denda [19]). The only simple geometric configurations have allowed the an-
alytical derivation of these Green’s functions. The numerical Green’s function
technique of Telles [1, 2, 3], aimed for crack problems, has broken this limita-
tion and enabled the derivation of the Green’s functions for more complex two-
dimensional and three-dimensional crack configurations. The Green’s function is
decomposed into the singular and the image terms, the latter being the solution
with the negative of the traction loading on the crack surfaces induced by the for-
mer. The image term is expressed as the function of the unknown crack opening
displacement (COD) which are determined to satisfy, when the singular solution is
superposed, the traction free condition on the crack surfaces. Telles et al. [1] have
set up the hyper-singular integral equations for the crack surface loading of the
image term and evaluated the integral by the numerical quadrature to determine
the CODs. In this paper we propose a technique to evaluate the singular and
hyper-singular integrals analytically using the complex variable theory. We model
the crack opening displacement by the dislocation dipole distribution, which is in-
terpolated by the product of

√
a2 − x2 and the orthogonal polynomials, where a is

the half-crack length of a straight crack along the x−axis. The resulting Cauchy-
type integrals are evaluated analytically to set up a departure from the quadrature
formula approach of Telles. Even though the singular and hyper-singular integrals
are evaluated analytically, the CODs still have to be determined numerically, thus
the technique is called the numerical Green’s function.

When the singularity approaches the prospective crack, its traction distribution
along the prospective crack has a sharp peak at the point closest to the singularity.
The p-type COD interpolation of the WCSE cannot take this behavior well. This
sets the limitation of the numerical Green’s function. We perform an extensive
error analysis of the numerical Green’s functions for the single crack, for which
the analytical Green’s functions are available (Denda and Kosaka [13]). We will
identify the zone of applicability of the proposed numerical Green’s functions where
they can be confidently applied.

2 Fundamental solutions in elasticity

2.1 Line force and dislocation

The fundamental (or singularity) solutions of elasticity consist of the line force
and dislocation. We use Muskhelishvili’s [20] complex variable formalism, as sum-
marized in Appendix A.1, for linear isotropic elasticity to derive them. Consider a
line force f = fx + ify or dislocation b = bx + i by at ξ in the infinite plane, where
b is Burgers vector of the dislocation. The displacement at z = x + iy, using the
results in Appendix A.2, is given by

u(s)(z, ξ) ≡ u(s)
x + iu(s)

y = − γ

2µ

{
κ log(z − ξ)− k log(z − ξ)

}
+

γ

2µ

(z − ξ)
(z − ξ)

, (1)
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and the stress components by

σ(s)(z, ξ) ≡ σ
(s)
xx + σ

(s)
yy

2
= −2 Re

[
γ

(z − ξ)

]
,

(2)

τ (s)(z, ξ) ≡ σ
(s)
yy − σ

(s)
xx

2
+ iσ(s)

xy = γ
(z − ξ)
(z − ξ)2

− γ
k

(z − ξ)
,

where {
k = −κ, γ = f/2π(κ + 1) line force,
k = 1, γ = iµb/π(κ + 1) line dislocation,

(3)

µ is the shear modulus and κ is Muskhelishvili constant defined in Appendix A.1.
The traction t = tx+ity at z on a line segment with the unit normal nx+iny = eiα

is given by

t(s)(z, α; ξ) = −γ

{
eiα 1

(z − ξ)
− e−iα k

(z − ξ)

}
− γ

{
eiα 1

(z − ξ)
+ e−iα (z − ξ)

(z − ξ)2

}
. (4)

3 Whole crack singular element

Consider a dislocation dipole, which is constructed by a pair of line dislocations
with opposite Burgers vectors −b and b located at ξ and ξ + dξ , respectively. It
represents the displacement jump along the infinitesimal segment dξ at ξ . The
displacement and stress components, obtained by taking the total derivative of the
line dislocation solutions (1) and (2) with respect to ξ, are given by

d u(s)(z, ξ) =
i

2π(κ + 1)

{
b

[
κ d ξ

(z − ξ)
− d ξ

(z − ξ)

]
+ b

[
d ξ

(z − ξ)
− (z − ξ)

(z − ξ)2
d ξ

]}
,

(5)
and

d σ(s)(z, ξ) = − 2 Re

[
i µb

π(κ + 1)
d ξ

(z − ξ)2

]
,

(6)

d τ (s)(z, ξ) =
i µ

π(κ + 1)

{
b

[
− d ξ

(z − ξ)2
+ 2

(z − ξ)
(z − ξ)3

d ξ

]
+ b

d ξ

(z − ξ)2

}
.

The traction is given by

d t(s)(z, ξ) = − i µe−iα

π(κ + 1)

{
b

[
ei2α

(z − ξ)2
d ξ − 1

(z − ξ)2
d ξ

]

− b

[
ei2α

(z − ξ)2
d ξ − 1

(z − ξ)2
d ξ + 2

(z − ξ)
(z − ξ)3

d ξ

] }
.(7)
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Consider the straight center crack in the infinite body. We represent the crack
opening displacement by the dislocation dipole distribution along the crack and call
it the crack element. Denda and Dong [21] has interpolated the

√
r COD behavior

at the crack tip and integrated the dislocation dipole distribution analytically to
develop the whole crack singular element (WCSE). We will recapitulate the key
formulas for the WCSE below. Introduce a local coordinate system O-xy with
the coordinate origin O at the crack center and the x-axis along the crack so that
the crack lies in the interval (−a, a). The local complex variable is denoted by
z = x + iy and the crack opening displacement by δ = δx + iδy. If we normalize
the local coordinates by Z = z/a (i.e., X = x/a and Y = y/a), then the crack
interval is reduced to (−1, +1) and the complex potential functions of the crack
element are given, from (A.9) with k = 1, by

φ(s)(Z) =
∫ +1

−1

γ̃(X)
dX

Z −X
, (8)

ψ(s)(Z) =
∫ +1

−1

{
γ̃(X) + γ̃(X)

} dX

Z −X
− ∂

∂Z

{∫ +1

−1

γ̃(X)
XdX

Z −X

}
,

where
γ̃(X) = γ(x) = iµδ/π(κ + 1).

Interpolate the density function γ̃(X) by

γ̃(X) =
iµ

π(κ + 1)

√
1−X2

M∑
m=1

δ(m)Um−1(X), (9)

which embed the
√

r COD behavior at the crack tips. The unknown crack opening
displacement coefficients δ(m) are determined following the procedure described
later. Use (C.2) to integrate (8), with the density function (9), analytically with
the result

φ(s)(Z) =
iµ

(κ + 1)

M∑
m=1

δ(m)T (m)(Z),

ψ(s)(Z) = − iµ

(κ + 1)

M∑
m=1

{
δ(m)T (m)(Z) + mδ(m)ZU (m−1)(Z)

}
, (10)

where T (m)(Z) and U (m−1)(Z) are given by (C.2) of Appendix C. The dis-
placement contribution is given, from (10) and (A.1), by

u =
M∑

m=1

(
K(m)(Z)δ(m) + L(m)(Z)δ(m)

)
, (11)

where

K(m)(Z) =
i

2(κ + 1)

{
κT (m)(Z)− T (m)(Z)

}
,

L(m)(Z) =
i

2(κ + 1)
(Z − Z)mU (m−1)(Z), (12)
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and the stress contribution, from (10) and (A.2), by

σ =
M∑

m=1

(
P (m)(Z)δ(m) + Q(m)(Z)δ(m)

)
, (13)

τ =
M∑

m=1

(
R(m)(Z)δ(m) + S(m)(Z)δ(m)

)
,

where

P (m)(Z) = Q(m)(Z) =
i

a(κ + 1)
mU (m−1)(Z),

R(m)(Z) = − i

a(κ + 1)
m

[
U (m−1)(Z) +

Z − Z

Z2 − 1

{
(m + 1)T (m)(Z)− U (m)(Z)

}]
,

S(m)(Z) =
i

a(κ + 1)
mU (m−1)(Z). (14)

The traction on the line segment whose unit normal has slope α is given, from
(13) and (A.3), by

t =
M∑

m=1

{
K∗(m)(Z, α)δ(m) + L∗(m)(Z, α)δ(m)

}
, (15)

where

K∗(m)(Z, α) =
i µm

a(κ + 1)

{
eiαU (m−1)(Z)− e−iαU (m−1)(Z)

}
,

L∗(m)(Z, α) =
i µm

a(κ + 1)

{(
eiα + e−iα

)
U (m−1)(Z)

+ eiα Z − Z

Z2 − 1

[
(m + 1)T (m)(Z)− U (m)(Z)

]}
. (16)

Evaluate (15) along the crack line to get the traction

t+ =
2µ

a(κ + 1)

M∑
m=1

mδ(m)Um−1(X) (|X| ≤ 1), (17)

on the upper crack surface and the stress on the X-axis outside the crack

σyy + iσxy = ± 2µi

a(κ + 1)

M∑
m=1

mδ(m)

(
X ∓√X2 − 1

)m

√
X2 − 1

, (18)

where the upper and lower signs correspond to X > 1 and X < −1, respectively.
The stress intensity factor is extracted, from (18), as

K(±1) = KI(±1) + iKII(±1) =
2µi

κ + 1

√
π

a

M∑
m=1

(±1)m+1mδ(m), (19)

where KI and KII are the Mode I and II stress intensity factors in the local O-xy
coordinate system.
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4 Numerical Green’s functions

4.1 Single horizontal crack

Consider an infinite body with a straight crack in the interval (−a, a) along the
x-axis and apply either the line force or dislocation to the cracked body.

4.1.1 Determination of crack opening displacement coefficients

Let φ(s)(z) and ψ(s)(z) be the complex potential functions for the fundamental
solution. The traction t(s) = t

(s)
x +it

(s)
y on the crack surface due to the fundamental

solutionis does not, in general, vanish. To satisfy the traction free condition we
seek the solution in the form

φ(total)(z) = φ(s)(z) + φ(z), ψ(total)(z) = ψ(s)(z) + ψ(z), (20)

where the image terms φ(z) and ψ(z) are required to produce the traction t =
tx + ity negative to t(s),

t = −t(s), (21)

on the crack surface in order to cancel the traction due to the fundamental solution.
We use the WCSE to obtain the image term. On the upper crack surface the
condition (21) is written, from (17), by

t(s)x + it(s)y =
2µ

a(κ + 1)

M∑
m=1

mδ(m)Um−1(X) (|X| ≤ 1). (22)

Note that the minus sign of the traction is canceled by the negative unit normal
ny = −1 of the upper crack surface.

As an example, look at the uniform remote loading (σ∞yy, σ∞xy). If we use only
one term (m = 1) in the approximation (9), then (22) becomes

σ∞xy + iσ∞yy =
2µδ(1)

a(κ + 1)
(|X| ≤ 1), (23)

which determines δ(1). Using this result the stress intensity factors are calculated
by (19) to give

K(±1) = KI(±1) + iKII(±1) =
√

πa
(
σ∞yy + iσ∞xy

)
. (24)

Note that the results KI(±1) =
√

πaσ∞yy and KII(±1) =
√

πaσ∞yxy agrees with the
analytical solution.

Unlike the remote uniform loading, the crack surface traction loading for the
fundamental solution is not constant and M multiple terms are required for the
interpolation (9) of the COD. These M coefficients are determined by selecting
M collocation points on the crack surface. Notice that the traction on the crack
surface is bounded at the crack tip as seen from (17). The best result is obtained
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by including the crack tips among the collocation points. Contrast this with the
numerical quadrature for the singular integral equations that must avoid the crack
tip as a collocation point [22, 23]. Once the COD coefficients are obtained, the
stress intensity factors are calculated directly by the formula (19) without the need
for indirect means in the post-processing.

4.1.2 Numerical Green’s function

Consider the line force f or dislocation b applied at ξ in an infinite domain with
a crack. Once the crack opening displacement coefficients δ(m) are determined,
following the procedure described in Section 4.1.1, we get the Green’s functions
for displacement, stress and traction,

u(total)(z, ξ) = u(s)(z, ξ) +
M∑

m=1

(
K(m)(Z)δ(m) + L(m)(Z)δ(m)

)
,

σ(total)(z, ξ) = σ(s)(z, ξ) +
M∑

m=1

(
P (m)(Z)δ(m) + Q(m)(Z)δ(m)

)
,

(25)

τ (total)(z, ξ) = τ (s)(z, ξ) +
M∑

m=1

(
R(m)(Z)δ(m) + S(m)(Z)δ(m)

)
,

t(total)(z, α; ξ) = t(s)(z, α; ξ) +
M∑

m=1

(
K∗(m)(Z, α)δ(m) + L∗(m)(Z,α)δ(m)

)
,

where the singular terms u(s)(z, ξ), . . . , t(s)(z, ξ) are defined by (1)-(4) and the
functions K(m)(Z), . . . , L∗(m)(Z,α) by (11)-(16). The stress intensity factors are
still given by (19). Note that the image terms for each quantity remain the same
as given in (25) for the line force and dislocation.

4.2 Single inclined crack

Consider a crack of length 2a1 centered at O1 = z1 = x1 + i y1 with the slope θ1.
Introduce the local coordinate system O1 − x1 y1 with the x1-axis along the crack
and z1 = x1 + i y1 is the local complex variable, which is related to the global
z = x+ i y complex variable by z1 = (z− z1)e−iθ1 . If we introduce the normalized
local complex variable

Z1 =
z1

a1
=

z − z1

a1eiθ1
, (26)

then the local displacement, stress and traction components are given by (11)-
(16) with the argument Z1 replacing Z. The crack opening displacement (9), now
denoted by δ

(m)
1 , is also defined locally. Once the crack opening displacement is
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determined locally, following the procedure described in Section 4.1.1, the trans-
formation back to the global components will give the numerical Green’s functions

u(total)(z, ξ) = u(s)(z, ξ) + eiθ1

M∑
m=1

(
K(m)(Z1)δ

(m)
1 + L(m)(Z1)δ

(m)
1

)
,

σ(total)(z, ξ) = σ(s)(z, ξ) +
M∑

m=1

(
P (m)(Z1)δ

(m)
1 + Q(m)(Z1)δ

(m)
1

)
,

(27)

τ (total)(z, ξ) = τ (s)(z, ξ) + e−2iθ1

M∑
m=1

(
R(m)(Z1)δ

(m)
1 + S(m)(Z1)δ

(m)
1

)
,

t(total)(z, α; ξ) = t(s)(z, α; ξ) + eiθ1

M∑
m=1

(
K∗(m)(Z1, α− θ1)δ

(m)
1 + L∗(m)(Z1, α− θ1)δ

(m)
1

)
,

where the singular terms are defined by (1)-(4). Note that the traction is calculated
along a line segment at z with the unit normal nx +iny = eiα in the global system.
The angle α becomes α− θ1 in the local coordinate system.

4.3 Multiple center cracks

The scheme developed above for the Green’s functions for the single crack can
readily be extended to multiple cracks. For each of the multiple cracks we introduce
the local coordinate system, Oj-xjyj ( j = 1, . . . , N ) in which the xj-axis is aligned
with the crack. In addition, the global coordinate system O-xy is used to specify
the crack geometry by its center zj , inclination θj , and length aj . The traction
contribution from each crack is calculated by (15) or (17) in the local system. The
unknown crack opening coefficients δ

(m)
j defined locally by (9) for each crack. The

numerical green’s function for the traction has the form

t(total)(z, α; ξ) = t(s)(z, α; ξ)

+
N∑

j=1

eiθj

Mj∑
m=1

(
K∗(m)(Zj , α− θj)δ

(m)
j + L∗(m)(Zj , α− θj)δ

(m)
j

)
, (28)

where Mj is the number of terms in the approximation (9) for each crack. Since
the unit normal to the crack k has an angle αk = θk − π/2, the zero traction
condition on this crack is given by

N∑

j=1

eiθj

Mj∑
m=1

(
K∗(m)(Zj , αk − θj)δ

(m)
j + L∗(m)(Zj , αk − θj)δ

(m)
j

)
= −t(s)(z, αk; ξ),

(29)
which is evaluated at Mk sample points to determine the unknown crack opening
displacement coefficients. Notice that, in (29), the traction contribution from the
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crack k itself should be calculated by formula (17). Once δ
(m)
j are determined the

Green’s functions are given by

u(total)(z, ξ) = u(s)(z, ξ) +
N∑

j=1

eiθj

Mj∑
m=1

(
K(m)(Zj)δ

(m)
j + L(m)(Zj)δ

(m)
j

)
,

σ(total)(z, ξ) = σ(s)(z, ξ) +
N∑

j=1

eiθj

Mj∑
m=1

(
P (m)(Zj)δ

(m)
j + Q(m)(Zj)δ

(m)
j

)
, (30)

τ (total)(z, ξ) = τ (s)(z, ξ) + e−2iθ1

N∑

j=1

eiθj

Mj∑
m=1

(
R(m)(Zj)δ

(m)
j + S(m)(Zj)δ

(m)
j

)
,

along with (28). Note that (28) and (30), with the proper singular terms, give the
universal form for the numerical Green’s functions for any fundamental solutions
and their combinations including their continuous distributions in the sense that
the form of the image terms remains the same.

5 Error analysis of single crack

5.1 Crack surface traction by the fundamental solutions

Consider a crack (−a, a) on the x-axis. We normalize the coordinates by half crack
length a, such that the crack is located in the interval (−1, 1) of the x-axis. We
have calculated the traction along the prospective crack surface, in an un-cracked
domain, generated by the fundamental solutions. The fundamental solutions with
the unit magnitude in x and y directions, respectively, are placed along the y-axis
(center line of the crack) at y = 0.1, 1.0 and 5.0. Figure 1 shows the traction tx and
ty distributions in the interval (−1, 1) due to the unit horizontal line force fx = 1.
The corresponding traction components for the vertical unit line force fy = 1 are
given in Figure 2. Notice the peak and the double peaks of the distributions for the
line force at y = 0.1. Similar features can be observed for the traction distribution
due to the unit line dislocation with bx = 1 (as shown in Figure 3) and by = 1
(not shown) for the dislocation.

It is well known that the p-type interpolation, like (9), does not approximate
these peaks well. Thus, we expect error in the results when the singularities
approach the crack. It is the objective of this section to assess the error and
identify the domain of applicability of the numerical Green’s functions where the
error is small.

5.2 Stress intensity factors by analytical Green’s function

The dimensional quantities appearing in the problem are the half crack length
a(m), shear modulus µ(N/m2), magnitudes of the line force f(N/m) and disloca-
tion b(m). We select the typical magnitudes of the non-dimensional b and f to be
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Figure 1: Crack line traction by the horizontal line force.

b̄ = b/a = 10−2 and f̄ = µ̄b̄ = 10−2µ̄, where the non-dimensional shear modulus is
selected to be µ̄ = 1 to give f̄ = 10−2. In this section, the bar indicates the non-
dimensional quantity. We have calculated the stress intensity factors for the unit
components (f̄x, f̄y) and (b̄x, b̄y) of the line force and dislocation, respectively, in
the unit of 10−2. The analytical Green’s functions, which automatically satisfy the
crack surface traction free condition, described in Appendix B are used. Figures
4 - 5 show the variation of the stress intensity factors KI and KII as the function
of the location of the fundamental solutions. We have placed the unit line force
components f̄x and f̄y and line dislocation components b̄x and b̄y, respectively, at
the location (x, y) to calculate the resulting stress intensity factors (SIFs) at the
right crack tip x = +1. By changing the location we have calculated the SIFs as
the function of the location and plotted in these Figures. Notice the regions of near
zero SIF, away from the crack, in Figure 4 for KI by f̄x and KII by f̄y. The line
dislocation components b̄x and b̄y have regions of low SIFs for both KI and KII

as shown in Figure 5. This is the region where we expect the numerical Green’s
functions to have difficulties in addition to the near crack region mentioned earlier.

5.3 Comparison of analytical/numerical Green’s functions

To support the speculation on the domains of high error expected of the numer-
ical Green’s functions and identify the domains where such error is low, we have
performed the error analysis. We have calculated the SIF by the numerical and
analytical Green’s functions and obtained the relative error in the SIFs as the
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Figure 2: Crack line traction by the vertical line force.

function of the location of the fundamental solutions. The procedure is the same
as the SIF calculation by the analytic Green’s function discussed above. The num-
bers of the terms used in the interpolation (9) are M = 3, 7 and 14. Each plot in
the Figures 6 - 9 has three contours marking the boundaries of 0.1%, 1% and 10%
relative errors, respectively. For example the region outside the 0.1% error contour
has the relative error less than 0.1%. The region inside the 10% error contour has
the error more than 10%.

In all of these Figures, we see the error near the crack is unacceptably high,
which is indicated the domain inside the 10% error contour. For M = 3, the
contour of 0.1% error is typically located in the circle with the radius 10a (not
shown), where a is the half crack length. The rectangular boxes marked at distance
2a and a apart from the crack approximately represents the 1% and 10% error
contours, respectively. For M = 7, the accuracy improves. The 0.1% and 1% error
contours are closely represented by the rectangular boxes marked at distances 2a
and a, respectively. For M = 14, however, while the 0.1% and 1% error contours
remain the same as for M = 7, the contour of 10% error expands away from the
crack. The use of more terms in the approximation does not improve the accuracy
of the results near the crack, rather the accuracy deteriorates. This is the typical
behavior of the p-type interpolation when it encounters peaks in the approximation
region.

In addition to the severely high error region near the crack, we also have
observed regions of mildly high error away from the crack. As speculated earlier,
we have confirmed that these are the regions of near zero SIFs. The numerical
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Figure 3: Crack line traction by line dislocation bx = 1.

Green’s functions have difficulty in approximating near zero SIFs.
Identification of the zone of high error by the numerical Green’s functions serves

as the guideline in their applications. The typical application is for the boundary
element method (BEM), where the fundamental solutions are distributed along the
boundary and integrated. In the process of integration, the order of the singularity
of these fundamental solutions drops to an extent that we can place the integrated
fundamental solutions (i.e., layer potentials) at the distance closer to the crack
than the discrete singularities without severe errors. For the layer potentials, the
recommended approach is to integrate the fundamental solutions analytically in an
infinite domain without the crack and use the numerical Green’s function technique
for the layer potentials. This way we are dealing with less singular entities than
the original fundamental solution. Nevertheless, it is important to improve the
near crack behavior of the proposed numerical Green’s functions. Such numerical
Green’s functions are under investigation.
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6 Numerical Green’s functions for Multiple cracks

Following the guideline set by the error analysis for a single crack, numerical
Green’s functions for three multiple crack configurations are obtained for the line
force and dislocation. The characteristic length in each problem is the half crack
length a with which the problem is non-dimensioned. The non-dimensional shear
modulus µ̄ = 2 and Poisson’s ratio ν = 0.3 are used. The collinear straight center
crack configuration places the cracks on the intervals (−3,−1) and (+1,+3) along
the x-axis. The parallel straight center crack configuration centers the cracks
on the y-axis on the interval (−1,+1) along the lines y = −1 and y = +1. The
inclined straight center crack configuration places the crack tips at the coordinates
(−1.7071,−0.7071) and (−0.2929, 0.7071) for one crack, giving a crack inclination
of α = 30◦ and maintaining a half crack length of a = 1 as is the case in the
two previous configurations. The second crack in the inclined crack configuration
is mirrored from the first along the y-axis. Each crack configuration is loaded at
y = 5.0 on the y-axis with four unit non-dimensional loading cases, b̄x = 1, b̄y = 1,
f̄x = 1, f̄y = 1. This location maintains the position outside the 2a rectangular
region surrounding each of the multiple cracks associated with less than 0.1% error
region and avoiding the mildly high error regions extending away from the crack.
The order of the polynomials is set at M = 7 for the interpolation. The resulting
stress and displacement fields are plotted on a square 2-D contour plot with an
interval of (−4, +4) for x and y (placing the loading outside the plotted region).
The contours are individually labeled and a color coded legend is provided. A 3-D
shaded plot with the z-axis set as the component value, accompanies the 2-D plot.
The complete set of figures can be found in Quick’s M.S. thesis [24] and we list
some of the most interesting cases in this paper. Results for the line force with two
collinear cracks are in excellent agreement with the analytical solution obtained
by Erdogan [25]. There are no analytical solutions available for other crack and
loading configurations.

7 Conclusion

We have proposed the numerical Green’s functions for multiple cracks based on
the whole crack singular element. The Green’s functions have the

√
r to eliminate

the need for the post processing for the stress intensity factor calculation. The
crack opening and 1/

√
r crack tip stress singularity are embedded mathematically.

However, the p-type approximation used has the weakness in capturing the near
crack behavior of the fundamental solutions that give rise to steep variation of the
crack surface traction to be dealt with the image term of the Green’s functions.
For the single crack, we have identified the domains of high error as well as the
domains where the numerical green’s functions can be used reliably. Following the
guideline set by the error analysis to avoid the near crack region of high error, the
actual numerical Green’s functions can be obtained for arbitrary straight multi-
ple crack configurations. The complete listing of the numerical Green’s functions
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for the three configurations of the multiple crack treated in this paper is given by
Quick [24]. The effort to improve the near crack behavior of the numerical Green’s
functions is in progress.
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A Appendix

A.1 Muskhelishvili’s complex variable formalism

In Muskhelishvili’s complex variable formalism [20] for plane isotropic elasticity,
the solutions are given by two analytic functions (or complex potential functions),
φ(z) and ψ(z), of a complex variable z = x+iy, where i =

√−1. The displacement
(ux, uy) and the stress (σxx, σyy, σxy) components are given by

2µu ≡ 2µ(ux + iuy) = κφ(z)− zφ′(z)− ψ(z), (A.1)

and

σ ≡ σxx + σyy

2
= 2Re {φ′(z)} ,

τ ≡ σyy − σxx

2
+ iσxy = zφ′′(z) + ψ′(z), (A.2)

where µ is the shear modulus and Muskhelishvili’s constant κ is given by κ = 3−4ν
in plane strain and κ = (3−ν)/(1+ν) in plane stress in terms of Poisson’s ratio ν.
The symbol Re indicates the real part and a bar indicates the complex conjugate.
A prime attached to the analytic functions of z indicates differentiation by z and
a bar the complex conjugate. The traction on a line segment with the unit normal
nx + iny = eiα is given by

t = tx + ity = 2eiαRe {φ′(z)} − e−iα
{

zφ′′(z) + ψ′(z)
}

. (A.3)

A.2 Fundamental solutions

A.2.1 Line force and dislocation

Consider a line force f = fx + ify (per unit thickness) and a line dislocation
b = bx + iby located, independently, at ξ in an infinite body. Their complex
potential function solutions are given by [26, 27]

φ(s)(z; ξ) = −γ log(z − ξ) ,

ψ(s)(z; ξ) = −kγ log(z − ξ) + γ
ξ

z − ξ
, (A.4)

where {
k = −κ, γ = f/2π(κ + 1) line force,
k = 1, γ = iµb/π(κ + 1) line dislocation.

(A.5)

A.2.2 Dipoles

A pair of point forces −f and f (or a pair of edge dislocations −b and b) located
at an infinitesimal distant dξ apart defines a force dipole (or a dislocation dipole).
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The force dipole represents a couple and the dislocation dipole represents a dis-
placement discontinuity over the infinitesimal line segment. The dipole solutions
are given by [26, 27]

dφ(s)(z; ξ) = −γ d {log(z − ξ)} ,

dψ(s)(z; ξ) = −kγ d {log(z − ξ)}+ γd

{
ξ

z − ξ

}
, (A.6)

where d(· · ·) is the total differentiation operator

d(· · ·) =
∂

∂ξ
(· · ·)dξ +

∂

∂ξ
(· · ·)dξ. (A.7)

A.2.3 Layer potentials

Consider the continuous distribution of the line forces (or the line dislocations)
over an arc L. The complex potential functions are given by the line integral of
(A.4),

φ(s)(z) = −
∫

L

Γ(s) log(z − ξ)ds,

ψ(s)(z) = −k

∫

L

Γ(s) log(z − ξ)ds +
∫

L

Γ(s)
ξ

z − ξ
ds, (A.8)

where Γ(s) is the density function representing the traction (or the dislocation
gradient) per unit length of the arc with s being the arc length. The complex po-
tential functions for the continuous distribution of force dipoles (or the dislocation
dipoles) over L are given by the line integral of (A.6),

dφ(s)(z) = −
∫

L

γ(s) d {log(z − ξ)} ,

dψ(s)(z) = −k

∫

L

γ(s) d {log(z − ξ)}+
∫

L

γ(s) d

{
ξ

z − ξ

}
, (A.9)

where the density function γ(s) is specified by (3). The complex potential func-
tions (A.8) for the continuous distribution of line forces (or line dislocations) are
called the single-layer potentials while those (A.9) for the force dipoles (or disloca-
tion dipoles) double-layer potentials [28]. Further discussion on the layer potential
functions are given by Denda and Dong [21]. Of interest to our present application
are the single layer of line forces, (A.8) with k = −κ and Γ(s) = t(s)/2π(κ+1), and
the double layer of dislocation dipoles, (A.9) with k = 1 and γ(s) = iµb(s)/π(κ+1),
where t(s) = tx + ity is the traction and b(s) = bx + iby is the Burgers vector of
the dislocation.
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B Analytical Green’s function for single crack

B.1 Image term solution

Consider the line force f (or the line dislocation b ) at ξ when a crack is present
along the x-axis in the interval (−a, a). The Green’s function solution that satisfies
the traction free crack surface condition is sought in the form

φ(total) = φ(s) + φ, ψ(total) = ψ(s) + ψ, (B.1)

where φ(s) and ψ(s) are the singular parts (or singular terms) for the infinite
homogeneous body and φ and ψ are the regular parts (or image terms) to be
determined so that the traction on the surface of the hole becomes zero. The
singular terms are given in Appendix A. The image terms are determined with the
help of the conformal mapping,

z = M(w) = R(w +
1
w

); R =
a

2
(B.2)

that maps the crack face into the unit circle and the points z and ξ in the z-plane
into points w and ρ in the w-plane. They are given by (Denda and Kosaka [13]),

φ(w, ρ) = φ0(w, ρ); ψ(w, ρ) = ψ0(w, ρ)− z
φ′0(w, ρ)
M ′(w)

, (B.3)

where

φ0(w, ρ) = φ1(w, ρ)γ + φ2(w, ρ)γ,

ψ0(w, ρ) = ψ1(w, ρ)γ + ψ2(w, ρ)γ, (B.4)

with

φ1(w, ρ) = L(w,
1
ρ
) + kL(w,

1
ρ
),

φ2(w, ρ) =
ξ̄ − ξ

R(1− ρ2)
1

w − 1
ρ

,

ψ1(w, ρ) =
ξ − ξ̄

R(1− ρ2)
1

w − 1
ρ

, (B.5)

ψ2(w, ρ) = kL(w,
1
ρ
) + L(w,

1
ρ
),

and the function L(w, η) is defined by

L(w, η) = ln(w − η)− ln w, (B.6)

with η = 1
ρ or 1

ρ . The prime attached to the functions indicates the differentiation
with respect to w. The constant k and the coefficient γ are defined by (3).
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The Green’s function solutions for the displacement, traction and stress com-
ponents are give in the form

u(total) = u(s)+u, t(total) = t(s)+t, σ(total) = σ(s)+σ, τ (total) = τ (s)+τ, (B.7)

where u(s), t(s), σ(s) and τ (s) are the contribution from the singular solution given
in Section 2 and u, t, σ and τ are the image terms derived below. Let w and ρ be
the images of z and ξ by the mapping function z = M(w) defined by (B.2). The
displacement contribution from the image term is given by

2µu(w, ρ) = κφ0(w, ρ)− ψ0(w, ρ) + (z̄ − z)
(

φ′0(w, ρ)
M ′(w)

)
, (B.8)

and the stress contribution by

σ(w, ρ) = 2Re

[
φ′0(w, ρ)
M ′(w)

]
, (B.9)

τ(w, ρ) =
ψ′0(w, ρ)
M ′(w)

− φ′0(w, ρ)
M ′(w)

+ (z̄ − z)
φ′′0(w, ρ)M ′(w)− φ′0(w, ρ)M ′′(w)

(M ′(w))3
,

where the functions φ0(w, ρ) and ψ0(w, ρ) are defined by (B.4) and σ and τ by
(A.2). The prime attached to the functions indicates the differentiation with re-
spect to w. The traction on a line segment with the unit normal nx + iny = eiα is
given by

t(w, ρ) = eiασ(w, ρ)− e−iατ(w, ρ). (B.10)

B.2 Crack opening displacement

The crack opening displacement δu = u+ − u−is given, from (B.8) and Appendix
B, by

2µδu =
{

κ

[
δL(w,

1
ρ
) + k δL(w,

1
ρ̄
)
]
−

[
δL(w,

1
ρ̄
) + k δL(w,

1
ρ
)
]}

γ

+ (κ + 1)
ξ̄ − ξ

R(1− ρ̄2)
δ

(
1

w − 1
ρ̄

)
γ̄, (B.11)

where

δL(w,
1
ρ
) = L+(w,

1
ρ
)− L−(w,

1
ρ
),

δL(w,
1
ρ̄
) = L+(w,

1
ρ̄
)− L−(w,

1
ρ̄
), (B.12)

and the function L(w, η) for η = 1/ρ, 1/ρ̄ is defined by (B.6). The constants γ and
k are given by (A.4) for the line force and dislocation. The argument w takes the
values

w± =
x± i

√
a + x

√
a− x

a
(B.13)

on the upper (+) and lower (−) faces of the crack.
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B.3 Stress Intensity Factor

The stress intensity factor is obtained using the stress formula (B.9) along the
crack line with the result

(KI+iKII)(±a) = 2
√

π

a

{
ξ̄ − ξ

R(1− ρ2)
1

(±1− 1
ρ )2

γ +

[
k

(
1

±1− 1
ρ

∓ 1

)
+

(
1

±1− 1
ρ̄

∓ 1

)]
γ̄

}
,

(B.14)
where the sign ± and ∓ follows the location ±a of the crack tips.

C Cauchy-type integrals

Consider the Chebyshev polynomials, Tm(x) and Um−1(x), of the first and second
kind and define, as in [29], two Cauchy-type integrals

T (m)(z) = − 1
π

∫ 1

−1

√
1− x2Um−1(x)dx

x− z
(m ≥ 0),

U (m−1)(z) =
1
π

∫ 1

−1

Tm(x)dx√
1− x2(x− z)

(m ≥ 0), (C.1)

where z = x+ iy is a complex variable. These integrals are evaluated analytically,
using the Cauchy integral formula, with the result

T (m)(z) =
(
z −

√
z2 − 1

)m

(m ≥ 0),

U (m−1)(z) = −
(
z −√z2 − 1

)m

√
z2 − 1

(m ≥ 0). (C.2)

Note that T (0)(z) = 1 and U (−1)(z) = −1/
√

z2 − 1.
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Figure 10: Variation of σyy by bx = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 11: Variation of uy by bx = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 12: Variation of σyy by by = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 13: Variation of ux by by = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 14: Variation of σxx by fx = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.

M. Denda and P. Quick / Electronic Journal of Boundary Elements, Vol. 2, No. 1, pp. 22-68 (2004)

53



-2 0 2 4

X

-3

-2

-1

0

1

2

3

4

Y

-0.21

-0.205

-0.19
-0.1

85-0.18

-0.15

-0.175

-0.1

u
1

-0.1

-0.15

-0.175

-0.18

-0.185

-0.19

-0.2

-0.2025

-0.205

-0.21

-0.2

-0.1

u
1

-4

-2

0

2

4

X

-4

-2

0

2

4

Y

(a)   

(b)   

Figure 15: Variation of ux by fx = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 16: Variation of σyy by fy = 1 as a function of location in infinite region
with two co-linear cracks for (a) 2-D color contour and (b) 3-D shaded plot.

M. Denda and P. Quick / Electronic Journal of Boundary Elements, Vol. 2, No. 1, pp. 22-68 (2004)

55



-2 0 2 4

X

-3

-2

-1

0

1

2

3

4
Y

-0
.0
1

-0
.0
1

-0
.0
1

-0.01

-0.01

-0.
01

-0
.0
0
1

-0.01

-0
.0
0
1

-0
.0
0
1

-0.001

0.01

-0.001

0

0

0
0

-0.001

0

0

0

0

0
.0
0
1

0
.0
0
1

0
.0
0
1

0.01

-0.001

0.001

0.001

0.001

0
.0
1

0.01

0.01

s
12

0.1

0.01

0.001

0

- 0.001

- 0.01

- 0.1

-0.05

0

0.05

s
1

2

-4

-2

0

2

4

X

-4

-2

0

2

4

Y

(a)   

(b)   

Figure 17: Variation of σxy by bx = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 18: Variation of σxx by by = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 19: Variation of σxy by by = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 20: Variation of σxy by fx = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 21: Variation of σxy by fy = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 22: Variation of ux by fy = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 23: Variation of uy by fy = 1 as a function of location in infinite region
with two parallel cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 24: Variation of σxx by bx = 1 as a function of location in infinite region
with two inclined cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 25: Variation of ux by bx = 1 as a function of location in infinite region
with two inclined cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 26: Variation of uy by by = 1 as a function of location in infinite region
with two inclined cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 27: Variation of σyy by fx = 1 as a function of location in infinite region
with two inclined cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 28: Variation of uy by fx = 1 as a function of location in infinite region
with two inclined cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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Figure 29: Variation of σxx by fy = 1 as a function of location in infinite region
with two inclined cracks for (a) 2-D color contour and (b) 3-D shaded plot.
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