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Abstract
An efficient algorithm for solving multiple reaction electrochemical polarization
equations is presented. The boundary integral formulation for the electric field
(Laplace equation) conveniently provides a direct relationship between potential
and current at the electrode surfaces, which can then be coupled to the nonlinear
polarization boundary conditions. As a consequence, a successful Gauss-Seidel
type iteration, incorporating a nonlinear solve at each step, can be developed. Re-
sults are presented for the modeling multiple chemical reactions in an electrospray
emitter tube.

1 Introduction

Boundary integral equation methods [1, 2] have been used very successfully to solve
a number of industrial and scientific problems involving electrochemical reactions
[3, 4]. These include the modeling and design of cathode protection systems (see
[5, 6, 7, 8] and references therein), modeling of industrial electroforming operations
[9, 10, 11], simulation of Scanning Electrochemical Microscopy [12, 13, 14, 15] and,
of particular interest herein, the analysis of an electrospray emitter tube [16, 17].
This emitter tube converts material in solution to gas phase ions that can be
analyzed by a mass spectrometer.

For electrochemical problems in general, the interest is in surface quantities,
and in particular, the surface current density. The integral equation formulation of
the governing Laplace equation provides this surface solution (without a volume
discretization) and, moreover, the current is computed directly, i.e., without a
numerical differentiation of the potential function. Direct solution of the surface
current is particularly important, in that electrochemistry applications generally
involve nonlinear polarization boundary conditions [18, 19]. That is, the boundary
conditions on the anode and cathode are not simply the applied voltages, but
instead the surface potential and current must satisfy a complicated relationship
(which may only be available as an experimentally determined voltage/current
curve). These polarization equations represent the details of the electrochemical
reactions occurring near the electrode surfaces. In general, the direct relationship
between surface potential and current provided by the boundary integral equation
yields a more accurate solution for the current, clearly beneficial in solving the
polarization equations. Equally important, a boundary integral analysis allows
the nonlinear algorithm to work solely with the surface quantities, rather than
having to contend with convergence of the volume solution in the course of the
iteration.
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Nevertheless, solving the polarization equations can, for a number of reasons,
be quite challenging. In the first place, although the polarization is ‘local’ (point
by point), all polarization values are very much coupled through the solution of the
Laplace equation. Depending upon the geometry of the problem, this can be a very
large coupled system, making each iteration computationally expensive. Second,
depending upon the parameters of the system, the voltage/current relationship
can be highly nonlinear. Finally, as in the electrospray analysis considered herein,
multiple electrochemical reactions can be taking place, and these reactions are
not independent. This coupling further complicates the equations, thus making
convergence to a solution more difficult. The work reported herein was motivated
by the failure of simple nonlinear algorithms to converge quickly, or at all, for
polarization equations arising in electrospray simulations.

In this paper, the boundary integral formulation of the Laplace equation is
exploited to develop a new efficient algorithm for solving nonlinear polarization
boundary conditions, with the emphasis on difficult multiple reaction models. It
is applied to single and dual reactions occurring in electrospray emitter tubes,
but it is expected that this technique will be effective for other electrochemical
simulations. The next section briefly describes preliminary material, the governing
electrochemical equations and the boundary integral analysis. Section 3 indicates
that a simple approach to solving the polarization is entirely inadequate, and the
new algorithm is presented in Section 4. Numerical results using this approach
are described in Section 5.

2 Governing Equations

The physical system (the electrochemical ‘cell’) that this analysis models consists
of an electrolyte volume bounded by a combination of insulated surfaces, one
anode and one cathode. A potential difference (cell voltage) is applied across the
anode and cathode, creating a potential distribution and a current field inside
the electrolyte volume. In the electrolyte it is assumed that the electric field is
obtained from a potential function φ, and that this function satisfies the Laplace
equation

∇2φ =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

φ = 0 . (1)

The electric field is the gradient of φ, E = −∇φ, and the current density I(P ) at
a surface point P = (xP , yP , zP ) is

I = κE •n = −κ
∂φ

∂n
. (2)

Here κ is the electrolyte conductivity, and n is the unit outward normal at P .
In general, obtaining a unique solution of Eq. (1) requires that either the po-

tential or current be known at each point on the boundary. In electrochemistry
applications however, the specified boundary data on the electroactive surfaces
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(anode, cathode) are replaced by polarization equations which relate surface po-
tential and surface current. In the electrospray application presented below, the
cathode is a ‘virtual’ cathode (meaning an isopotential surface with no electro-
chemical reactions), and thus polarization is only present on the anode surface.
The following discussion therefore only considers the anode, it being understood
that a real cathode could be treated similarly. In addition, for simplicity, this sec-
tion only presents the equations for a single reaction. The equations for coupling
multiple simultaneous reactions have been described in [17], and will be briefly
reviewed in Section 4.2.

The cell voltage is composed of the sum of the anode and cathode interfacial
potential differences (IPD) and the IR voltage drop in the electrolyte. For this
system with a virtual cathode, there is no cathode IPD. Due to electrochemical
reactions at the anode surface, the potential φA(Q) at the electrolyte boundary is
given by

φA(Q) = φ0 + ηA(Q) (3)

where φ0 is the applied potential on the anode, ηA(Q) is the polarization (collec-
tively, the IPD), and Q is a point on the anode. To simplify notation, the Q will
be dropped, it being understood that the polarization as defined here varies over
the anode surface. In this work we assume that, for each reaction, the polarization
is composed of three components

ηA = ηE + ηact + ηcon . (4)

The equilibrium potential ηE is a constant with respect to a reference half-cell
potential such as H2/H

+; it depends upon the particular reaction, and is the
minimum potential necessary for the reaction to proceed. The activation and con-
centration polarizations for this reaction, ηact and ηcon respectively, are functions
of the local current. The activation polarization is related to the current through
the Butler-Volmer equation [18, 19]

I = I0

(

e
αAF

RT
ηact − e−

αCF

RT
ηact

)

, (5)

where F is Faraday’s constant, R is the gas constant, and T is the temperature in
Kelvin. The reaction dependent parameters are the exchange current I0, and the
transfer coefficients αA and αC . The concentration polarization [18, 19] depends
upon two additional parameters, the ion valence nv and the limiting current IL

via

ηcon =
RT

nvF
log

(

1 −
I

IL

)

. (6)

The simultaneous solution of Eqs. 1 and 3, together with the remaining boundary
conditions, is therefore a coupled system of nonlinear equations, and an efficient
algorithm for solving this system is the subject of this paper.
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2.1 Boundary Integral Formulation

The boundary integral equation for the Laplace equation ∇2φ = 0 is usually writ-
ten in terms of the potential φ and flux ∂φ/∂n. For electrochemistry applications
it is convenient to replace the flux with the current density Eq. (2). This integral
equation then takes the form [2, 20]

P(P ) ≡ φ(P ) +

∫

Σ

φ(Q)
∂G

∂n
(P,Q) dQ+

1

κ

∫

Σ

G(P,Q)I(Q) dQ = 0 . (7)

Here n = n(Q), denotes the unit outward normal on the boundary surface Σ, and
P and Q points on Σ. In three dimensions, the fundamental solution (Green’s
function) G(P,Q) is usually taken as the point source potential

G(P,Q) =
1

4πr
, (8)

where R = Q − P and r = ‖R‖ is the distance between P and Q. In general,
Eq. (7) is reduced to a finite system of linear equations by approximating the
surface Σ in terms of elements defined by M nodal points, and then interpolating
the surface potential and flux in terms of the values at these nodes. This results
in a matrix system

H [φ] = G [I] (9)

where H and G are M ×M matrices, and [φ] and [I] are column vectors of the
nodal values of potential and current. Taking into account the known boundary
conditions, these equations must be solved simultaneously with the polarization
equations on the anode, Eq. (3). In this work, the matrices H and G are obtained
from the boundary integral equation by means of a Galerkin approximation [20]. A
quadratic interpolation of the surface (six-noded triangles) and the boundary func-
tions is employed. Thus, for an element defined by nodal points {Qj = (xj , yj, zj)},
1 ≤ j ≤ 3 for the vertices, 4 ≤ j ≤ 6 for the mid-side nodes, the interpolation of
the boundary surface and boundary potential are given by

Σ(η, ξ) =

6
∑

j=1

(xj , yj , zj)ψj(η, ξ)

φ(η, ξ) =
6

∑

j=1

φ(Qj)ψj(η, ξ) . (10)

The shape functions ψj are

ψ1(η, ξ) = (1 − η − ξ)(1 − 2η − 2ξ) ψ4(η, ξ) = 4η(1 − η − ξ)
ψ2(η, ξ) = η(2η − 1) ψ5(η, ξ) = 4ηξ
ψ3(η, ξ) = ξ(2ξ − 1) ψ6(η, ξ) = 4ξ(1 − η − ξ)

(11)

where the parameter space is the right triangle 0 ≤ η ≤ 1, 0 ≤ ξ ≤ 1, and
0 ≤ η + ξ ≤ 1.
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3 Simple nonlinear algorithm

As motivation for the development of a new solution algorithm, we first describe
the failure of a simple direct method. The simplest, admittedly too naive, approach
to solving the coupled nonlinear equations is what is termed a ‘Picard iteration’,
or more descriptively, ‘chase-your-tail’. An initial guess for the potential at the
electrolyte boundary, φA(Q), is required to start the iteration process. Logical
choices for φA(Q) include the potential φ0 on the anode or the largest of the
equilibrium potenials ηE . (The reader is reminded that only anode polarization is
considered.) With this initial guess the boundary integral equations Eq. (9) can
be solved to obtain the anode current density. The polarization equations, Eq. (5)
and Eq. (6), provide a relationship between current and potential, which can be
summarized as

φ = F(I) , (12)

and substituting this first current solution into this equation yields a new guess
for the potential. In general, if φk denotes the potential at the kth iteration step,
Ik the corresponding current solution obtained from the Laplace solution, then

φk+1 = F(Ik) , (13)

and the process repeated until (hopefully) the change in potential is below a spec-
ified tolerance. This algorithm can be modified by including a relaxation factor
β,

φk+1 = (1 − β)φk + βF(Ik) , (14)

a measure of the trust one has that the new iterate is moving towards the solution.
The Picard iteration method is a completely general technique, and thus takes

no account of the special aspects of the polarization and boundary element equa-
tions. Moreover, except for solving the Butler-Volmer equation (necessary to com-
pute F(I)), it does not solve a nonlinear equation at any step of the process.
Although it has worked reasonably well for many electroforming situations, with
both simple and complex geometries, these simulations involved only a single reac-
tion and, probably most importantly, the physical parameters were such that the
equations were only mildly nonlinear. For the multi-reaction electrospray analysis
considered in [17] and herein, this simple method turned out to be very costly at
best (slow convergence), and in some situations, failed to converge at all.

As an illustration of the unsuitability of this approach for electrospray analysis,
Figure 1 displays the Picard convergence history for a simulation of a 2000µ length
electrospray tube. (Complete details concerning the simulations will be presented
in Section 5; here we simply wish to comment on the convergence difficulties.)
The absolute value of the maximum change in potential is plotted versus iteration
number, and the three curves represent different choices for the underrelaxation
factor β. For β = 10−2 there is no convergence, and in fact if the signed value were
plotted, it would be seen to oscillate between plus/minus the value shown. For
β = 10−4, convergence appears to be possible, but clearly impractical regarding
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computation time. Convergence is achieved for β = 10−3, but in a very expensive
20000 iterations.

An attempt was made to accelerate the convergence of this algorithm by allow-
ing the relaxation factor to be chosen adaptively during the course of the iteration.
Depending upon the change in potential F(Ik)−φk over several steps of the iter-
ation, β is adjusted appropriately: a larger value is chosen to speed convergence if
no oscillation is detected, while a β is decreased if the iteration does not appear to
be converging. While this strategy has been somewhat successful in reducing the
time to convergence, the Picard approach nevertheless remains an expensive and
not entirely trustworthy algorithm. The sensitivity of the convergence history to
the value of β is clearly a serious problem for practical computations, as the range
of values which achieve convergence is almost certainly problem dependent.

4 Polarization algorithm

There are a number of unappealing aspects of the fixed point approach, but the
key problem appears to be in the cycling between the boundary integral Laplace
solution, and the polarization relations. That is, in one iteration to the next, all

values of potential (and in fact, all unknowns) are updated simultaneously. As
a consequence, the iteration can oscillate between different ‘local’ solutions, and
thus relaxation of the iteration is required to achieve convergence. Appropriate
choice of this relaxation factor is almost certainly problem dependent, and as seen
above, convergence, when achieved, can be exceedingly slow.

The additional concerns are, first, that as the current is computed from the
Laplace equation, it is entirely possible to compute an unphysical value, i.e., one
that exceeds the limiting current IL. This causes obvious problems in trying to
evaluate Eq. (6), and an ad hoc approach is required to come up with a reason-
able ηcon. Thus, for applications such as electrospray, wherein the concentration
polarization can play a significant role, the fixed-point algorithm is likely to be
less effective (in electroforming, current densities are in general well below the
limiting current density). In addition, as will be discussed further below, the fixed
point formulation becomes clumsy for the multiple reaction situation. The total
current at a point is the sum of the currents for each reaction, and obtaining the
individual currents from the total is not straightforward. Finally, just considering
the numerics, the only nonlinear operation carried out in the fixed-point approach
is the inversion of the Butler-Volmer equation to obtain ηact from the current. It
seems reasonable to suppose that incorporating the solution of a nonlinear equa-
tion somewhere along the line would likely be beneficial for convergence.

The new algorithm described below seeks to correct these deficiencies, most
especially the simultaneous updating of all potentials. It is convenient to first
describe the algorithm for a single reaction. The extension to multiple reactions
is quite straightforward and will only require a brief summary of the necessary
modifications.
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Figure 1: Convergence history for the Picard iteration for three relaxation factors.
The emitter length is 2000µ.
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4.1 Single Reaction

To describe the algorithm, we start with the boundary integral matrix equation
Eq. (9), suitably rearranged. The anode nodes are collectively listed first, and the
columns in H and G are swapped so that the anode currents are grouped together
with the unknowns on the remainder of the boundary. This results in the linear
system

H̃

[

φA

b

]

= G̃

[

IA

x

]

, (15)

where b denotes the known boundary data, x the unknowns on the non-anode part
of the surface, and

IA =







I1

...
IMA






φA =







φ1

...
φMA






, (16)

are the vectors of anode currents and voltages (MA being the number of anode
nodes). Multiplying both sides by G̃−1 results in the block matrix system

[

IA

x

]

=

[

A11 A12

A21 A22

] [

φA

b

]

, (17)

where A = G̃−1H̃ . (Of course A is not computed in this fashion: the kth column
of A, Ak, is obtained by solving G̃Ak = H̃k, the right hand side being the kth

column of H̃.) The rationale for reformulating the equations in this way is that it
is now possible to write an equation for the current at anode node j

Ij =
∑

k

A11
jk φk +

∑

l

A12
jl bl . (18)

which does not involve any other anode current values. Moreover, as is well known,
the boundary integral matrices are, roughly speaking, ‘local’, in that influences
from nodes away from node j are relatively unimportant. This is a consequence of
the Green’s function (Eq. (8)) dying off with distance. It is therefore likely that A
will share this property, and this can be exploited by subtracting out the diagonal
term in Eq. (18),

Ij −A11
jj φj =

∑

k 6=j

A11
jk φk +

∑

l

Ajl bl . (19)

The potential φj can now be replaced by its equivalent in terms of current, Eq. (12),

φj = F(Ij) , (20)

and we obtain
Ij −A11

jj F(Ij) =
∑

k 6=j

A11
jk φk +

∑

l

Ajl bl . (21)
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The virtue of this form is that, treating all anode potentials except at node j as
known quantities, this nonlinear equation can be solved for Ij and φj . Cycling
through the anode nodes, continually updating the right hand side with the new
potentials, yields a Gauss-Seidel type iteration in which the latest information for
φA is employed in solving the next nonlinear equation. A second benefit of the
reformulation in Eq. (17) is that the iteration can proceed by dealing solely with
the anode nodes: in the fixed-point algorithm, the solution for x is continually
updated, which is costly and may contribute to the convergence problems. With
Eq. (17), the solution for x (if needed) automatically falls into place once the
values on the anode have converged.

Note that Eq. (21) is of the form F (z) = 0, and that there is some discretion
in choosing what will play the role of the variable z. By opting to have z be
the concentration polarization ηcon, problems with the limiting current mentioned
above, (e.g., evaluating Eq. (6) with I ≥ IL) are avoided. Making this choice, the
algorithm proceeds as follows:

1. For a value of ηcon at the node under consideration, the current is obtained
by inverting Eq. (6)

I = IL

(

1 − e
nvF

RT
ηcon

)

; (22)

2. Knowing the current, ηact is obtained from the Butler-Volmer equation, and
then the total polarization is determined from Eq. (4);

3. Using a bisection algorithm, the value of ηcon which satisfies Eq. (21) is
determined, and the potential at this node is updated. An iteration step is
the solution of Eq. (21), sweeping through all anode nodes;

4. The solution is considered converged when the maximum change in φj , 1 ≤
j ≤MA, from one iteration to the next is less than a specified tolerance.

Regarding computational efficiency, the overhead in this algorithm can be re-
duced somewhat by making a few simple observations. First, the vector

∑

l

A12
jl bl . (23)

that appears in Eq. (21) is obviously independent of the iteration, and is therefore
computed once and saved. Second, the matrix-vector multiply

∑

k 6=j

A11
jk φk (24)

is a large part of the total computation, and thus it is essential (for a FORTRAN
implementation) to store the transpose ofA instead ofA. This allows accessing this
matrix by columns. Also in this regard, employing the highly optimized BLAS [21]
coding for this linear algebra operation is advantageous. Finally, when sweeping
through the anode nodes to solve Eq. (21), it is not necessary to go through this
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vector sequentially (i.e., j = 1 to j = MA). It has been found that convergence is
faster if the list of anode nodes ordered by current, from the highest to the lowest
current. This is intuitively reasonable, in that this will tend to cluster neighboring
anodes. Moreover, the higher the current, the larger the polarization; thus, getting
a reasonable estimate of these values helps speed convergence.

4.2 Multiple Reactions

As the application of the algorithm to more than two reactions is straightforward,
it suffices to discuss the situation when two reactions are present. Fig. 2 schemat-
ically illustrates this situation. The two conditions which couple the separate
polarization equations are first that the polarization for each reaction must yield
the same effective anode potential [17]. Thus,

φA = η1
E + η1

act + η1
con = η2

E + η2
act + η2

con , (25)

where the superscripts indicate the two different processes. Second, the total
current at any point is the sum of the currents carried by individual reactions,

I = I1 + I2 . (26)

To go from single to dual reactions only requires relatively minor modifications
to the algorithm described in Section 4.1 above. Each reaction polarization is
computed separately, beginning with the process having the largest equilibrium
voltage, say reaction 1. As above, the controlling variable is chosen to be η1

con,
and choosing a value for this quantity determines both the current for this reaction,
and the anode potential φA. Knowing φA, Eq. (25) can be solved (again using the
η2

con as the control variable) for the polarization and current for reaction 2. The
total current input into Eq. (21) is then given by Eq. (26).

As mentioned above, figuring out how the current splits between the reactions
is highly problematic for the fixed-point algorithm. In the present approach, this
is handled automatically, and the ‘numerical interaction’ between the reactions
is only through the relatively simple Eq. (25). Moreover, this approach clearly
extends to more than two reactions.

5 Numerical Results

In this section, the polarization algorithm is applied in the study of electrochem-
ical reactions inside an electrospray emitter tube. The emitter is employed in
conjunction with a mass spectrometer and generates gas-phase ions from analyte
species originally in solution, the gas eventually entering the spectrometer. The
electrospray/mass spectrometry combination is an important tool which permits
the analysis of a wide variety of analytes heretofore difficult or impossible to study
using other techniques. Its applications span a broad range of categories, from
simple molecular weight and structure determinations, to complex studies of the
solution chemistries and gas-phase structures of biopolymers (see e.g., [22, 23]).

E. Chisholm et al. / Electronic Journal of Boundary Elements, Vol. 1, No. 3, pp. 418-438 (2003)

427



φj

ηc ηa

ηc ηa ηE

Interface Potential Difference

VAVC

Cathode AnodeElectrolyte

Reaction 1

Reaction 2∆φ

ηE

Figure 2: Schematic representation of two reactions at the anode surface.

The primary goal of the simulations is to understand the behavior of the elec-
trospray process as a function of the various parameters, and to help optimize
these settings for specific applications. However, our goal herein is limited to
demonstrating the performance of the new nonlinear iteration scheme. The phys-
ical model discussed below is sufficient and convenient for this purpose, but is not
meant to be a completely faithful representation of the process.

A typical electrospray ion source configuration, shown in Fig. 3, is comprised
of two electrodes. The narrow-bore metal electrospray emitter, held at a high
voltage, and the atmospheric sampling aperture plate of the mass spectrometer,
held at a voltage at or near ground. Under typical operating conditions, a solution
containing the analyte of interest (which is normally ionic) is pumped through the
emitter and sprayed towards the aperture plate. The spray is formed by the elec-
trophoretic charge separation of ions in solution, which creates and charges the
droplets. As presently understood, the charge-balancing process involves electro-
chemical oxidation/reduction of the components of the metal ES emitter and/or
one or more of the species in the solution.
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Figure 3: Electrospray mass spectrometry configuration.

The geometry employed in the boundary integral analysis of the emitter is
shown in Fig. 4. The electrolyte solution was modeled as forming a truncated
‘Taylor cone’ (having a 49.3o angle at the base) at the emitter tip. The cone forms
due to the balance between the electrical field forces and the surface tension of the
liquid. For modeling simplicity, the actual cathode in Fig. 3 has been replaced by
the flat virtual cathode (disk of radius 4.1µ held at a constant potential difference
with respect to the anode of φC − φA = −13V ) at the end of the Taylor cone.
In this region, the isopotential surfaces are expected to be almost planar and,
moreover, the virtual cathode is somewhat removed from the anode. Thus, this
simplification is not expected to significantly affect the anode results. The side
surface of the cone is modeled as an insulator (zero flux), and the anode is the
cylindrical surface (radius 100µ) of the tube. The upstream end of the emitter
has been capped off with an insulated surface, restricting the domain of the model
to the region of significant electrochemical activity. Tables listing the various
electrochemical parameters and other inputs to the simulation can be found in the
Appendix.
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Figure 4: Geometry for the electrospray emitter tube simulation.

The most prominent redox reactions within the emitter under these condi-
tions (further details and discussion about the chemistry can be found in [17]) are
assumed to be H2O oxidation,

2H2O = O2 + 4H+ + 4e− (27)

and ferrocene oxidation,
Fc = Fc+ + e− . (28)

In the following, we report results for three different length emitter tubes – 200µ,
400µ, and 600µ – and three different scenarios: water oxidation only, Fc oxidation
only, and both reactions. In all cases, the tolerance for convergence of the anode
potential was 3.0 × 10−5. Table 1 shows the number of iterations to convergence
for each tube length, and for the three chemistry models. Recall that in these
calculations, the iteration through the anode went from highest to lowest current
density. As an example of the improvement obtained, without this reordering
the 600µ dual reaction calculation took 1009 iterations, roughly 4% slower. The
convergence histories, for the three tube lengths, for the dual reaction calculation
are shown in Fig. 5. In this graph, the logarithm of the maximum change in
anode potential, from one iteration to the next, is plotted as a function of iteration
number. The three curves refer to the length of the emitter tube.

Figure 6 presents a contour plot of the converged current density solution
(both reactions) on the emitter tube. A uniform mesh was employed on the tube;
however, the figure shows that the rapid variation in current is limited to the
emitter end of the tube, and thus a finer mesh in this region would have been
more appropriate. All three models (of differing lengths) used the same mesh
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Figure 5: Convergence history for the dual reaction calculations.

(5033 nodes total, 3280 on the anode), the anode being scaled appropriately to
achieve the appropriate size. Thus, the Laplace solution is less accurate for the
larger lengths, resulting in the observed increase in the iterations required for
convergence.

200µ 400µ 600µ

Oxygen 253 525 972
Ferrocene 1694 3228 4922
Dual 252 515 972

Table 1: Number of iterations to convergence for electrospray analyses with dif-
ferent emitter lengths.

Note that the dual reaction converges in about the same number of iterations
as the oxygen-only reaction, whereas ferrocene alone requires much more effort.
This is due to the fact that the oxygen limiting current is appreciably larger than
for ferrocene; thus, in the ferrocene-only calculation the currents are near to the
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limiting value and are sensitive to small changes in potential. When the reactions
are coupled, most of the current will go through the oxygen path, and thus the
currents in each path will be sufficiently far from the limiting currents, and this
does not play a significant role numerically.

It should also be noted that the large number of iterations required for fer-
rocene oxidation alone is not a cause for concern. This is an idealized condition
which assumes that only this reaction is possible (e.g. no other species that can
oxidize is present). Normally some other reaction will be able to carry some of the
current and the ferrocene reaction would therefore assume a less significant role.
The idealized condition forces the mathematical solution to drive the ferrocene re-
action to the limiting current everywhere, a condition that takes many iterations
to achieve a balance. The results for this case therefore model a situation that
would be extremely difficult to achieve in practice, and therefore of little physical
interest. It is presented here as an extreme test of the ability of the algorithm
to converge. By comparison, the fixed point algorithm did not converge for this
ferrocene only calculation.

As noted above, a key advantage of the new scheme compared to the Picard
iteration is that an ad hoc relaxation factor is not required to achieve convergence.
For the 2000µ length tube examined in Section 3, and a tolerance of 1.6×10−5, the
new algorithm converged in 277 iterations (κ = 4.79 × 10−10) and 736 iterations
(κ = 2.11 × 10−9). In all of these simulations, both reactions are present. The
corresponding convergence history (for the smaller conductivity) is shown in Fig.
7; the logarithm of the maximum change in potential over the tube (from one
iteration to the next) is plotted versus iteration. Figure 8 plots the voltage and
current solution (larger conductivity) in the near tip (axial distance = 1000, and
x = 1000 is the emitter tip) region; in these simulations, the mesh was graded at
the tip, and thus the current density solution is smoother than the uniform mesh
solution shown in Figure 6.

6 Conclusions

Boundary integral methods provide a powerful tool for many types of electro-
chemical analysis [3, 4], and this paper addresses a key task in this modeling:
the solution of the nonlinear polarization boundary conditions. An efficient ‘local’
Gauss-Seidel type iterative algorithm is obtained by inverting a boundary inte-
gral coefficient matrix to obtain the current as a function of the potentials. That
the boundary integral formulation provides these direct equations relating surface
current and potential, and hence makes possible this polarization algorithm, is
another advantage to using this technique for electrochemical simulations.

Calculations involving one or two chemical reactions in an electrospray emitter
tube have been carried out. A more complete discussion of the results of the
simulations and a comparison with experimental data can be found in [24]. These
calculations were shown to converge significantly faster than a ‘global’ Picard
iteration in which all polarization values are updated simultaneously. Moreover,
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Figure 6: Converged solution (both reactions) on the emitter tube.

the Picard technique only converged if the iteration was relaxed, and then only for
a limited range of values for the underrelaxation factor. The new algorithm does
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Figure 7: Convergence history, new algorithm, for a 2000µ emitter.

not employ relaxation factors.
Although the multi-reaction electrospray simulations reported herein are rea-

sonably complicated, the geometry is nevertheless relatively simple. Further test-
ing of this approach with more difficult geometries, such as occur in electroform-
ing or Scanning Electrochemical Microscopy analyses, should be carried out. This
work is presently being pursued.
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Appendix: Parameters

The electrochemical parameters employed in the simulations are listed in the tables
below.
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Table 2: Polarization parameters.

Name Symbol Oxygen Ferrocene Units

Equilibrium half-cell
potential ηE −1.229 −0.573 volts vs. H2/H

+

Limiting Current IL 5.36E − 8 7.36E − 15 A cm−2

Exchange Current I0 1.00E − 20 2.17E − 12 A cm−2

Valence nV 2 1 moles electrons/mole
Transfer Coefficient αa 0.493 0.493 -
Transfer Coefficient αc 0.493 0.493 -

Table 3: Basic parameters.

Name Symbol Value Units

Temperature T 293.16 degrees Kelvin (K)
Cell voltage −13.0 volts
Gas Constant R 8.314 Joules K−1 mole−1

Faraday Constant F 96485 Coulomb/mole
Convergence tolerance 1.6E − 5 -
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