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ABSTRACT

The boundary element method (BEM) for two-dimensional numerical stress
analysis is employed to investigate crack-face bridging of cracked fibre-metal laminates
(FML) with cut-outs in this study. The fracture mechanics prediction of crack growth in
these perforated laminates involves the interaction of the geometry and crack size, the
delamination between the pre-peg and metal layers, and the extent of fibre-bridging of
the crack flanks with the stress field caused by the cut-out. The present work
investigates the effects of a stress concentration on the fibre-bridging stress and the
stress intensity factor of a bridged crack in fibre-metal laminates. A number of cracked
configurations are analyzed and the FML, ARALLZ2, is considered. The bridging
stresses on the crack flanks are modeled in the 2-D analysis using power-law
expressions and with the mechanical properties of the laminate homogenized through
the thickness. An iterative scheme is employed to solve for the bridging stresses as they
are not known a priori. Three dimensiona finite element method (FEM) analyses are
also carried out to confirm the validity of the 2-D BEM models.

FML’s with circular cut-outs will contain high bridging stresses near the cut-
out resulting in fibre failure there, causing a reduction of the extent of fibre bridging of
the crack. Results of the study show a likelihood of fibre failure near the edge of the
cut-out and this could lead to a reduction of the bridging length. Comparison of the
BEM with the FEM stress intensity factors for the range of problems analyzed reveals
that the percentage difference is generally less than about 6%, except for a few cases
when the power-law index of 0.5 is assumed. The BEM results indicate an increasing
bridging stress and stress intensity factor with decreasing bridging length and the
benefits of the fibre bridging of the crack are clearly demonstrated. This numerical
study confirms that the 2-D BEM models employed can indeed be used to provide a
quick and reasonable estimate of the stress intensity factor for a bridged crack ina FML
with acircular cut-out.
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1.0 INTRODUCTION

One extrinsic toughening mechanism which reduces the extent of crack
opening in fibre-reinforced materials is crack-face fibre-bridging. This mechanism
sows crack growth and may even lead to crack arrest. The effect of the crack-tip
singular behaviour and its interaction with a hole in a laminate, on the fibre-bridging
mechanism, isinvestigated in this study.

A new class of lightweight, fatigue resistant materials called fibre-metal
laminates (FML), developed by the Delft University of Technology in Holland,
combine high strength and fatigue properties of composites with good machinability
and impact resistance of metals, see, e.g. Marissen (1988, 1989, 1991, 1994) and Guo
and Wu (1999). The commercialy available ARALL (Aramid Reinforced Aluminum
Laminate), GLARE (Glass Reinforced Aluminum Laminate), and CARALL (Carbon
Reinforced Aluminum Laminate) consist of alternating layers of thin aluminum alloy
sheets bonded by a structural adhesive impregnated by high strength fibres. The use of
these fatigue-critical materials in lower wing skins, fuselage, exterior doors, and
horizontal and vertical stabilizers can result in weight savings of up to 30%, see, e.g.
Marissen (1988), compared to monolithic aluminum.

Much of the experimental and analytical works on fibre-metal laminates
reported in the literature consist mainly of fatigue crack propagation studies of plane
sheets with no cut-outs. Marissen (1988) has anaytically quantified the relationship
between bridging stress and delamination zone size with the assumption of a uniform
bridging stress profile. Cain and Tan (1997) have analyzed statically loaded crack
problems with a range of bridging profiles and showed that the uniform stress profile
assumption can only be applied to a central crack geometry. They used a two-
dimensional simplified boundary element method (BEM) analysis to model a truly
three-dimensional problem and showed that it can indeed be used to provide quick
estimates of the stress intensity factors.

The present study is expanded from the work of Cain and Tan (1997) to
analyze cracks emanating from notches in several geometries with the variation of the
fatigue crack size, delamination shape, and the bridging stress profile. To fully
understand the bridging effects of FMLs, a three-dimensional study is necessary. This
is intractable analytically and is expensive and time consuming numerically when
repeated analyses are required. Asin Cain and Tan (1997), a two-dimensional BEM
study using power-law expressions for the bridging stress distribution with several
simplifying assumptions is presented here as a suitable aternative to obtain quick
estimates for the stress intensity factors. More specifically, the results obtained from
the two-dimensional boundary element method are compared with those obtained from
the three-dimensional finite element method (FEM), and a discussion of the effects of
the various parameters on the bridging stress and stress intensity factor is presented.
Finally, the effects of reducing the bridging zone length on the bridging stress and stress
intensity factor are also presented.

A partially bridged ARALL fibre-metal laminate is analyzed. In the partial
bridging cases studied, the bridging zone length is reduced to 75% and 50% of the crack
length following the assumption that the fibres near the hole have failed. Again,
numerical results for partial bridging from the two-dimensional boundary element
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method analysis are presented and compared with those obtained by the three-
dimensional finite element method. A comparison is made between the case of full
bridging, partia bridging, and no bridging of the crack, and the benefit of fibre-bridging
in fibre-metal laminatesis clearly shown.

2.0 Analysis Model for Fibre-Bridging

Fiber-metal laminates, such as ARALL, are hybrid composites that have
fracture characteristics similar to conventional composites but with differences in the
fracture process. Figure 2.1 shows a 2/1 lay-up (2 layers of metal and one layer of fibre
laming) of a fibreemetal laminate. The crack in fiber-metal laminates initiates and
propagates in the metal layers while the composite lamina remains intact. With greater
loads, the matrix in the composite layer will begin to crack and eventualy the fibers
will start breaking. The fibers and matrix transfer the load from the cracked metal layer
and thus bridge the crack by restraining further crack opening. There is aso load
transfer from the metal layer to the fiber layer through a shear stress in the adhesive
between the metal and fiber layers. This causes fatigue deformation of the adhesive and
results in delamination between the metal and fiber layers. Therefore, there are two
inter-related damage systems in such laminates as ARALL, namely, crack growth in the
metal layers accompanied by delamination between the fiber and metal layers resulting
from adhesive shear deformation.
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Figure2.1: 2/1 Lay-up of a Fiber-Metal Laminate, Marissen (1988).
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The function of the adhesive is to impregnate the fibres and bond them to the
metal layers. When the laminate is loaded, the adhesive is deformed (see Figure 2.2)
due to a local shear stress system. There is a load transfer from the crack bridging
fibres to the metal sheets by the shear stresses in the adhesive layer and the resulting
shear deformation allows some crack opening and fatigue crack growth (see Figure 2.3).
Under fatigue loading, the cyclic load transfer causes cyclic adhesive shear stresses to
initiate fatigue delamination of the adhesive between the fibres and the metal sheets.
The effect of the adhesive shear on the bridging stresses has been investigated in recent
work by Guo and Wu (1999), Guo and Wu (1998), and Takamatsu, et al. (1999). This
adhesive deformation is a necessary component for the bridging mechanism in fibre-
metal laminates.
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Figure 2.2: Adhesive Shear Defor mation upon Crack Opening, Marissen
(1989).

The delamination between the fiber and metal layers is an important
mechanism in the crack bridging of fiber-metal laminates. Fiber bridging in fiber-metal
laminates is different from crack-face bridging in conventional composites because the
delamination has a large influence on the bridging stress. Delamination causes stress
redistribution ahead and behind the crack tip that permits fibers to remain intact in the
wake of the crack tip, Wilson and Wilson (1991). The delamination shape and size are
related to the crack length and magnitude of the bridging stress.

An increase in delamination causes a decreasing fiber effectiveness and
increasing stress intensity and crack growth rate in the metal layer, Marissen (1994).
The fiber bridging stress is transferred to the cracked metal layer through the interface
so a higher bridging stress will result in a higher driving force for delamination and
consequently a higher delamination growth rate, Lin and Kao (1996). But with an
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increasing delamination, the bridging stress and adhesive shear stress are reduced and
the resulting low bridging fiber stress will slow delamination growth but increase crack
growth, Marissen (1991). Thus, it can be seen that the delamination zone is strongly
dependent on the bridging stress.

The shape of the delamination zone was observed to be generally elliptical.
Using ultrasonic scanning of specimens, several studies revealed an eliptical
delamination shape, Lin and Kao (1996), Marissen (1991), and Takamatsu, et al.
(1999). A triangular shape was considered by Guo and Wu (1998) in their work with
CCT specimens made of GLARE. In another study, Guo and Wu (1999) stated that the
delamination shapes are irregular during fatigue and not elliptical in most cases but
closer to atriangle. A general delamination shape is shown in Figure 2.3 where a crack
from anotch is bridged in the delaminated area.
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Figure 2.3: General Delamination Shape dueto a Crack from a Notch,
Marissen (1991).

2.1 Stress Intensity Approach

The stress intensity approach has been used due to its simplicity in obtaining
the crack tip stresses and stress intensity factor. The stress intensity factor at the crack
tip can be expressed by,

Ko = Ky - K, (2.1)
For crack extension to occur,
Ktip 3 KC (2.2

Here, K, isthe applied stress intensity factor, K, is the stress intensity factor due to fibre
bridging, and K is the fracture toughness of the material. For a particular geometry, K,
and K. can be obtained from published results and polynomial functions obtained from
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previous tests. K, on the other hand, depends on bridging tractions and the crack
opening displacement (see Figure 2.4).
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Figure 2.4: Superposition of Stress Intensity Factorsfor a Bridged Crack,
Foote, et al. (1986).

2.1.1 Power-Law Expressionsfor Bridging Stress

In order to obtain the critical parameters that characterize the fibre-bridging
process in fibre-metal laminates, it is essential to find the bridging stress distribution on
the crack faces. Analytical expressions were proposed by Foote, et al. (1986) which
were based on their work using strain-softening materials. An empirical power law
relationship for the bridging stress distribution as a function of crack opening
displacement was given by,

, m
so(u)=s Bgl “lgf()ﬁ 23)

Here, u” and s~ are the opening displacement and the bridging stress, respectively, at
the fibre furthest from the crack tip, and m is a power index. This gives a distribution
of increasing crack-face bridging stress toward the crack tip.
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Suzuki and Sakai (1994) later used a relationship which gave a decreasing
bridging stress toward the crack tip with another power index, nyg. The equation for this
bridging stressis given as,

s B(u) =s *Béu(x)g d (2.4)

gu H

As it is convenient to express the bridging stress distribution as a function of
distance along the crack in the form of a power law, the relationship between the crack
opening displacement and distance may also be similarly assumed. The crack opening
displacement in terms of the bridging zone length, b, can be written as,

u(x)=u’ (25)

¢+
elg

Cain and Tan (1997) modified equation (2.3) to define s in the same manner as
equation (2.4) such that,

(2.6)

*é ..M
so(0)=s g+ - 20
g ¢ u g

[(@Ne=Y ey

The use of equations (2.4) and (2.6) with (2.5) yields new expressions with
combined power indices (m and n) such that the respective expressions for sg as a
function of distance x from the crack tip become:

SB(X)=8;§§3 @7

for stresses decreasing towards the crack-tip, and:

6 &0
sy(x)=s a+d- 2 g 2.8)
e ¢ baog

for stresses increasing towards the crack-tip (see Figure 2.5).
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Figure 2.5: Power-Law Bridging Stress Distributions

The bridging stress distribution can be obtained once the magnitude of the
stress in the last intact fibre away from the crack tip is known. This stress depends on
the extend of debond between the fibre which it acts through, and the matrix. It can be
determined by considering the strain in this fibre, Cain and Tan (1997). This strain, €,
is related to the half-crack opening displacement n° and the delamination length
between the layers, d, at that position by:

*

e -V (2.9)
; .

It can be seen that the bridging stress distribution in fibre-metal laminates is a
three-dimensional problem. However, it can be treated as a two-dimensional one in the
plane of the laminate by homogenization of mechanical properties through the thickness
of the laminate. Although the bridging stress only acts on the fiber layer crack faces, it
was assumed that it acts as a crack-closure stress all through the thickness, Cain and
Tan (1997). The net force in the two-dimensional model must be the same as in the
three-dimensional model and thus in the two-dimensiona analysis, the stress in the last
intact fiber farthest from the crack tip is:

* &A b *
s, =E, &3 (2.10)
]

E;; is the Young's modulus in the fibre direction of the fibre laminae, A is the cross-
sectional area of the laminae, and Ar is the total cross-sectional area of the whole
laminate. Combining egquations (2.9) and (2.10) yields the expression:
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It is shown here that in order to obtain the bridging stress distribution along the
crack length, the half-crack opening displacement and the bridging stress have to be
known at the last intact fibre from the crack tip; neither is known a priori. Hence, the
procedure to obtain sg is an iterative one. The maximum half crack opening
displacement with no crack bridging, n* is first obtained using a numerical approach
such as the finite element or the boundary element method. Using equation (2.11), the
stress in the farthest intact fibre from the crack tip, g is then calculated and used in
equations (2.7) and (2.8) to find the bridging stress distribution. A new n"isfound ina
subsequent numerical stress analysis. This procedure is then repeated until the values of
n andsg converge to set tolerances.

For a uniform crack bridging stress distribution, where n = m = 0, the
distribution can be calculated directly if the half crack opening displacement without
any crack bridging is known. Let the half-crack opening displacement at the crack
mouth be

(2.11)

*

V. =V (2.12)

By using Bueckner’'s superposition principle, Cain and Tan (1997) obtained the half
crack opening displacement for a uniformly distributed crack bridging stress under an
applied stress s as,

(2.13)

(2.14)
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3.0 Review of the Boundary Integral Equation (BIE) Method

The boundary integral equation (BIE) method, also commonly known as the
boundary element method (BEM), is an alternative to the finite element method (FEM)
for the numerical solution of many engineering problems. Boundary element analysisis
efficient in treating problems with stress concentrations and regions with high stress
gradients such as those found near cracks. The use of fewer elements than in FEM is
possible because only the boundary of the solution domain is discretized. As a result,
the BIE method has become widely used in the study of fracture and fatigue of
engineering components.

3.1 The BIE Method for Anisotropic Elasticity

The derivation of the BIE for anisotropic elasticity follows similar steps as that
for the isotropic case. The difference lies in the stress-strain relations and the form of
the fundamental solution, U;i(P,Q) and T;i(P,Q). Following the usual limiting process,
the boundary integral equation for elastostatics can be written as, (see, e.g. Tan (1987)):

C;i(P) u(P)+qQu(Q) T;(P.Q) ds(Q)=
Qt (Q) U, (P.Q) dsS(Q)

(3.1)

where

c,(P )—lquT (P,Q)ds(Q) (32)

C, (P) depends on the local geometry of the surface at point P, and S is the boundary

region around P. T;(P,Q) and U;(P,Q) represent the tractions and displacements,
respectively, in the x-direction at Q(x) due to the application of a unit concentrated load
in the x;-direction at P(x) in a plane homogeneous infinite body.

The stress-strain relations for a two-dimensional anisotropic material in plane stress are:

i €y :J éau a, S ff: S 11P

14 , _é ul

= y- ea12 Ay Ay a S 22y (3.3)
1

|

Zelzb B A a66glslzb

Here &;; are the elastic compliances related to the engineering constants by, see, e.g. Tan
and Gao (1992b):

345



B.E. Cudzilo and C. L. Tan/ Electronic Journal of Boundary Elements, VVol. 1, No. 3, pp. 336-403 (2003)

1 N1, Ny
ay =— p =—— Qp =-——=-
Ey E. Ey E.
(3.4
a, _hypy _hyy a _hypy _hyp
6~ = 2% = =
En Gp E. Gp

Ei; and Ey are Young's moduli in the principal material axis directions, n; are
Poisson’ s retios, Gy, is the shear modulus, and h;;; and h;; are the coefficients of mutual

influence. The coefficients of mutua influence, h;;; and h;j;, are both zero for the case
of orthotropy.

The characteristic equation derived by Lekhnitskii (1963) can be written as:
a11m4 - awm3 + (2312 + aﬁe)mz - axmta, =0 (3.5

The roots of this equation are distinct and never rea as long as the material is non-
isotropic. These roots are required for the fundamental solution for anisotropic
elagticity. The fundamental solutions for displacements and tractions, respectively, are
now given by, see, e.g. Tan and Gao (1992b):

U, :2Re[rilAleoge(zl)+ Mo A, Ioge(zz)] (3.6)
T, = 2n, Reanf et 04 nf 32
g edg e A
(3.7)
e A, 0 A, o
- 2n, Re@m c—2 o+ m —2 3
’ e 821 o gzz A
le—-2n1Regrq§eig+ ?ﬁ?ﬂ
€ ShE CRA o @y
+2n, Regﬂ+ A‘ZE
ed4d 4
where
Iy = a,nf +ay, - a,m (3.9)
r2j = alzmj +2' Ay (3.9b)
m
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and n; are the unit outward normal components at Q with respect to the x,-x, co-ordinate
system. The complex constants A; may be obtained from the following equations:

2“?’%8 s
JAMAL . A o
mie) res) e} Ree)l G S Y
e'm{Ajz}H S 0 E
where
Bzl m r o] (3.11)

Equation (3.1) is an integral constraint equation relating the boundary tractions to the
boundary displacements. These equations are, in general, intractable analytically and
therefore numerical methods must be employed for their solution.

3.1.1 Numerical Solution of the BIE

The BIE is solved numerically by dividing the boundary S, of the solution
domain into a series of M line elements as shown in Figure 3.2. The geometry of the
elements and the variation of the BIE functions over the elements are assumed to be
quadratic. The formulation for the numerical procedure has been presented by Tan and
Gao (1992a) (1992b), and Tan, et al. (1992). The quadratic isoparametric elements, as
shown in Figure 3.3, are each defined by three equally spaced nodes with intrinsic co-
ordinatesz = -1, z = 0, z = +1, respectively.

boundary element

/\.,_

<

2 nodes of element
X,

Figure 3.2: Solution domain R, with boundary S, divided into M elements.
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Figure 3.3: Quadratic one-dimensional element.

The shape functions for these elements are:

N‘S)(z):%z(1+z) -1£z £+1 (3.12)

The superscripts on the shape functions N(z) represent the local nodes of the element.

The geometry, displacements and tractions can then be expressed in terms of the shape
functions and nodal values as:

x].(z)=N°(z)x}‘
uj(z):Nc(z)ujc
t(z)=N°@z)t c=13 (3.13)

The discretised form of the boundary integral eguations becomes:

i (Pa) ( )+g éa. U (Pd(bC))QTji (PaaQ)NC(Z JI@)ds

1 c=

-4 &1 (Peeo)qu, (PN Jok ) os

b=1 c=1

@)

[y

-

=1N (3.14)

348



B.E. Cudzilo and C. L. Tan/ Electronic Journal of Boundary Elements, VVol. 1, No. 3, pp. 336-403 (2003)

This gives a total of 4M linear algebraic equations for the unknown displacements and
tractions at the boundary nodes of the solution domain where,

M = number of elementsin the mesh

N = number of nodes = 2M

Pi®9 = " node of the b element = 1, N
b=1,M

c=13

|J (Z )| = S—S = Jacobian of transformation
Z

Standard matrix methods can then be used to solve for the unknown displacements and
tractions on the boundary, S.

3.3 Linear-Elastic Fracture M echanics Analysis by the BIE Method

The stress intensity factor characterizes the crack tip stress field in a linear
elastic material. The aim of fracture mechanics analysis is to calculate this parameter
from the measured displacements and stresses near the crack tip which can then be
compared to the fracture toughness of the materia to establish structural integrity.
Figure 3.4 defines the coordinate system.

Figure 3.4: Co-ordinate system and material orientation in LEFM
analysis.

The stress state in terms of the stress intensity factors in anisotropic elasticity is
the same as in isotropic elasticity; the stresses are given by:
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Sy = Kl/\/2pr
Sy= K“/\/Zpr (3.15)

The displacements on the crack faces (q = 180° in Figure 3.4) in terms of the
stress intensity factors are, see, e.g. Tan and Gao (1992a):

1u, |2r eD11 D, U' K, (3.16)
| .
i E; gDzl 2 UI ti Ky %

where
és,p, - s p,U ép - p,u
D,, |mé— D, = Ima=— "2,
& S-5, &s,- s
&% - 89, U éq, - g,U
D,, = e—n D, =Img™—2; (317
. S-S u es - Szu

The material property parameters, s, given in Tan and Gao (1992a), are related
to the roots of the characteristic equation, m by:

_ mcosf +sinf

= : j=12 (3.18)
' cosf - msinf
and p; and g; are:
= affs; +ags, (3.19)
s’ +ag - ags
q; = o Sgg A, j=12 (3.20)

J

Theloca compliances are obtained from the following transformation from the
global x;-x, co-ordinate system to the local Cartesian system by:

ag = a,, cos*f +(2a, +ag)sin*f cos’f +a,,sin*f +
(a16 cos’f +a,, sin*f )sin2f (3.21)
ag = a, sin*f +(2a,, +ay)sin’f cos’f +a,, cos*f -
(316 cos’f +a, sin’f )sinzf (322
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af =a, +(a11 +ay, - 23, - a66)sin2f cos’f +

3.23
%(a26 - a,)sin2f cos .
a& =8t 2(311 tay - 2312 B aee)SinZ X + (3.24)
2(a,, - a,,)sin2f cos2f
€ L2 2 1 U.
= f - f +=(2 + 2f - X +
a:I.(E 2 SIN a,, COs 2( a,;, a%)cos HSII‘I (3.25)
(a16 cos’ f )(coszf +3sin*f )+(a165in2f )(3coszf - sinzf)
ag: :éazzsinzf - a,, cos’f +l(2a12+a66)c052f Ugnof +
g 2 H (3.26)

(amsinzf )(coszf - sin’f )+(a26 cos’f )(coszf - 3sin*f )

3.3.1 Quarter-Point Crack-Tip Element in Plane Orthotropic Bodies

The expressions for the stresses and displacements in the vicinity of the crack-

tip are proportiona to ]/ \/F and \/F , respectively. In order to obtain the proper
variation of the displacements, the mid-point node of the element adjacent to the crack
tip can be shifted to the quarter-point position as shown in Figure 3.5. This results in

the proper \/F variation for the displacement field. In order to obtain the variation of
the tractions, the nodal shape functions associated with nodal tractions have to be

multiplied by ]/\/F where | is the length of the element. Details of this formulation

have been presented by Tan and Gao (1992a), Martinez and Dominguez (1984), and
Cruse and Wilson(1977).

3174 I/ Lizal._ 34 |

*r—o——o

\

crack tip
node

Figure 3.5: Quarter-point crack-tip element of length, I.
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The displacement variation in this quarter-point element can be expressed in terms of
nodal values as:

u, = ujA+(- uy +4up - 3uf‘)§—§ +(2uf - 4u? +2uj‘\)§g (3.27)

where the superscripts in u; denote the nodes as shown in Figure 3.1. The analytical

expressions for K, and K; based on the nodal displacements may be obtained by

equating the coefficients of \/F in equations (3.16) and (3.27). If the crack lies parallel
to the global x;-axis, the expressions may be written as:

éK, U_ \jp/2l €D, - D& ud +4uf - 3uU

éK L,J_ D [D]é D D l:ﬁ C B Al,-J (3'28)

et et[D]e D, 2 Ug Uy +4u, - 3u,
where Det[D] =(D,,D,, - D,,D,,) (3.29)

This equation is commonly referred to as the ‘ displacement formula in BEM analysis.

The computed traction values t_j are related to the physical traction values t; at
the nodes, again denoted by the superscripts, by:

FE = ¢E (3.30)

FD = =D (3.31)

A _imtA |1
f —|rl®n;)ltj\/|7 (3.32)

If the crack lies paralel to the global x;-axis, then the tractions with the incorporated
singularity at the crack-tip are related to the stress intensity factors by:

cA A [T r_ K,
t, —Ir|®n(')1t1\/|7 ",'®”JS 12\/7 ——m (3.339)

VTN | r_ K,

t, —Ir|®rr(')1t2 I —Ir|®ngs 22\/7 _—Zpl (3.33b)
or

K, =tV 2pl (3.343)

K, =t/ v2pl (3.34h)
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This equation is referred to as the ‘traction formula in BEM analysis. It is evident that
the displacement formulainvolves additional computational effort as compared with the
traction formula. Tan and Gao (1992a) also showed that the stress intensity factors
obtained using the displacement formulas are significantly more sensitive to the size of
the crack-tip elements used. The traction formula is more widely used and the stress
intensity factors can be obtained directly from the computed nodal tractions. Although
these eguations have been derived for a case where the crack lies parallel to the global
x;-axis, they remain valid for an arbitrarily oriented crack provided that the x;- and x,-
components of the displacements and tractions are replaced by the x- and y- components
in the local co-ordinate system.

4.0 Analysisof Fully Bridged Cracked FMLswith Notches

Problem Definition and Scope

Three different rectangular fibre-metal laminate plates with cracks emanating
from the edge of a circular cut-out were analysed by the boundary element method
(BEM) in two-dimensions and the finite element method (FEM) in three-dimensions.
The rectangular plates were subjected to a remote uniform tension, s, in the fibre
direction and referring to Figure 4.1 they were (i) a plate with a semi-circular hole at
one edge with a single crack emanating from it, (ii) a plate with a semi-circular hole at
both edges with a crack emanating from each, and (iii) a plate with a central circular
hole with two symmetric cracks emanating from it. The orientation of the plane of the
cracks was chosen to be perpendicular to the fibre direction.
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Figure4.1l: Cracked FML Geometries
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The geometry of the rectangular plates in the x;-x, plane was defined by the
height-to-width ratio, H/2W = 2 for case (i), and H/W = 2 for cases (ii) and (iii). The
radius-to-width ratio of the circular cut-out for case (i) was chosen as R/2W = 0.1, and
R/W = 0.1 for cases (ii) and (iii). The relative crack lengths considered for case (i) were
c/2W = 0.2, 0.3, 0.4, 0.5, and for cases (ii) and (iii), were c/W = 0.2, 0.3, 0.4, 0.5. The
height to fibre-reinforced laminae thickness ratio, H/t, and the total laminate to fibre-
reinforced laminae thickness ratio, T/t were taken to be 400 and 4, respectively. It was
assumed to be elastic and that linear elastic fracture mechanics (LEFM) is applicable.
Also, the thickness of the adhesive between the aluminum layer and the fibre layer was
assumed to be small and have negligible influence on the material properties of the
laminate. Furthermore, it was also assumed that there were no residual stresses in the
laminate.

Two delamination zone shapes were considered in this study. One shape was
that of a quarter-circle and the other shape was that of a quarter-ellipse with a major-
minor axis ratio of 2, around each crack flank. These shapes were centred at the crack
mouth of each crack, which corresponds to one or more edges of the hole. The
delamination zone size, d, was taken at the last intact fibre away from the crack-tip in
the bridged zone. For a fully bridged crack, the edge of the hole represents the last
intact fibre away from the crack tip and hence d was set equal to the crack length, a, for
the circular delamination shape and 4 for the elliptical delamination shape.
Experimentally observed delamination shapes are generally elliptical so a circular shape
represents a more severe situation than would likely be encountered. Nevertheless, it is
of interest to obtain the effect of an increased delamination size on the bridging stress
and the stress intensity factor.

Two-Dimensional Analysis

The problem to be treated involved several parameters such as. the fatigue
crack length, a, the equivaent crack length, ¢, the delamination zone size, d, and the
power law indices, n and m of Eqgns. (2.7) and (2.8). In the case of partial bridging, the
bridging zone length, b is also varied depending on the amount of bridging fibres
present. For full bridging of the crack faces, b is equal to the crack length, a.

The two-dimensional numerical stress analysis was carried out using the
boundary element method (BEM) for anisotropic elasticity employing quadratic
isoparametric elements, see Gao and Tan (1992b). The bridging stress distribution was
assumed to be a continuous closing pressure on the crack faces according to Egs. (2.7)
and (2.8), with both of the power-law indices n and m having values of 0, 0.5 and 1.0.
The crack was assumed to have propagated through both the metal layers and the fibre
layer, and plane stress conditions were assumed here since the laminate is very thin
through the thickness. One-quarter of each plate was modelled due to geometric and
material symmetry about two axes. A typical BIE meshis shown in Figure 4.2a.
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Three-Dimensional Analysis

The finite element method (FEM) was used for the three-dimensional stress
analysis, employing two commercial software packages: SDRC I-DEAS™ 7.0 used for
the mesh generation, and MSC/Nastran™ 70.7 used as the FE solver. The elements
used for the FEM analysis were 20-noded quadratic iso-parametric solid bricks with the
mid-side nodes of the elements adjacent to the crack-tip shifted to the quarter-point
position. The 3-D analysis of a fully bridged fibre-metal laminate consisted of a crack
propagating in the metal layers only with the fibre layer remaining crack free. Each
plate in the 3-D analysis was modelled as one-eight of the whole plate due to geometric
and material symmetry in three planes. A typical 3-D FEM mesh is shown in Figure
4.2b and comparing it to the BEM mesh in Figure 4.2a, it can be seen that the modelling
of the BEM mesh is far less time consuming than that for the FEM mesh.

N
(a) BEM mesh — elements = 23 (b) FEM mesh — elements = 7716
—nodes = 46 —nodes = 45555

Figure 4.2: Typical BEM and FEM meshes; ¢/W = 0.5, circular delamination.

Material Properties

The fibree-metal laminate material, ARALL2-2/1, was used in this study.
ARALL2 is ahybrid composite consisting of alternating aluminum 2024-T3 layers with
aramid-epoxy layers. The stacking is defined by the lay-up, which in this case is 2/1
and signifies two layers of aluminum sandwiching one layer of fibre-epoxy.

The material properties of each layer are shown in Table 4.1 and the indices 1,
2, and 3 denote the fibre, transverse and through-the-thickness directions. In the 3-D
FEM analysis, the aluminum layer was treated as isotropic and the fibre layers were
treated as orthotropic with the following material property relations in the thickness
direction:
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E
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For the 2-D BEM modelling, the material properties were homogenized
through the thickness of the laminate using classical laminate plate theory. The
resulting homogenized material properties for ARALL that are used in the two-
dimensional BEM analysis are also listed in Table 4.1. The thickness of the aluminum
layer was chosen as 0.3 mm and the thickness of the aramid-epoxy layers was chosen as
0.2 mm.

Table4.1: Material Propertiesfor Aluminum, Aramid-Epoxy, and ARALL2-2/1.
Y eh (1988).

Eu Ex G Gz

Material GPa) | (GPY) | (GP9) | (GPa) | M2 | M=

Aramid-Epoxy 62.7 4.56 1.63 153 | 0.355 | 0.493

Aluminum 717 27.6 0.300

ARALL2-2/1 69.5 55.9 20.7 0.300

4.2 Results and Discussion

The bridging stress and the stress intensity factor results are presented in this
section for a fully bridged ARALL laminate with circular and elliptical delamination
shapes. The bridging stress and stress intensity factor results obtained by a BEM
analysis in two-dimensions are compared to those obtained from a three-dimensional
FEM analysis.

421 FEM Analysis
Bridging Stress Distribution

The bridging stress, sg, was taken along the mid-plane of the fibre layer in the
finite element analysis and normalized with respect to the remote applied tensile stress,
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s. The variations of the normalized bridging stress, sg/s, with relative distance x/a = -
1.0 to x/a = 1.0 from the crack-tip, along the centreline of the fibre layer for an edge
crack, double-edge crack and central crack are shown in Figures 4.3 to 4.8. These
geometries have circular and elliptical delamination shapes and varying normalized
crack lengths, ¢/W, from 0.2 to 0.5 for the double-edge and central crack and c/2W of
0.2 to 0.5 for the edge crack.

The normalized bridging stress, sg/s, for all crack geometries increases as x/a
approaches 0 and 1.0, corresponding to the crack-tip and crack mouth, respectively. For
example, for a central crack with a circular delamination and crack length of ¢/W= 0.5,
the normalized bridging stress at x/a = 0 is 4.24. This stress decreases to about 2.05 at
x/a = 0.53 and increases to 10.14 at x/a = 1.0. The increase of the normalized bridging
stress at x/a = 0 is likely due to the enforced singularity of the quarter-point crack-tip
elements in the auminum layer adjacent to the mid-point elements in the fibre-
reinforced layer of the mesh. The large increase of the normalized bridging stress,
spls, a x/a = 1.0, which represents the notch root, is due to the effect of stress
concentration near the notch.

The results in Figures 4.3 to 4.5 show that for al crack lengths, plate
geometries, and delamination zone shapes, the normalized bridging stress, sg/s, a the
notch root (or crack mouth), represented by x/a = 1.0, is very large compared to the
normalized bridging stress anywhere else along the crack line. The highest normalized
bridging stress, sg/s, for example, is for the edge crack with a circular delamination
shape and crack length, ¢/2W of 0.5, where it reaches sg/s = 18.92. The trendsin these
figures show that the fibres near the hole could be highly strained and would likely fail
when their ultimate tensile stress is exceeded. The rapid increase of the normalized
bridging stress, sg/s, near the holeis generally confined to a small region, typically 5 to
10 % of the total crack length, where the stress concentration effects are the highest.
Therefore, the presence of a notch causes the load through the fibres to be concentrated
near the notch, which in turn greatly increases the bridging stresses in those fibres.

For the central crack and double edge crack in Figures 4.6 and 4.8, the
normalized bridging stress distribution, sg/s, decreases with increasing crack length,
c/W. Thisisopposite to the trend in fibre-metal 1aminates without notches for these two
cracked geometries, where the bridging stress distribution increases with increasing
crack length, Cain and Tan (1997). The decrease in the normalized bridging stress
observed here can be explained by considering the influence of the stress concentration
caused by the notch. For relatively small crack lengths compared to the size of the
notch, the bridging stresses caused by the presence of the notch are higher than the
bridging stresses caused by the crack alone, and the effect of the stress concentration
slowly diminishes with increasing distance from the notch.
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Figure 4.3: Variations of normalized bridging stress, sg/s, with relative distance
from the crack-tip, x/a, along the centreline of the aramid-epoxy
layer, for the fully bridged central crack problem with circular and
elliptical delaminations. (FEM analysis)
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Figure 4.4: Variations of normalized bridging stress, sg/s, with relative distance
from the crack-tip, x/a, along the centreline of the aramid-epoxy
layer, for the fully bridged double edge crack problem with circular
and elliptical delamination. (FEM analysis)
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Figure 4.5: Variations of normalized bridging stress, sg/s, with relative distance
from the crack-tip, x/a, along the centreline of the aramid-epoxy
layer, for the fully bridged edge crack problem with circular and
eliptical delamination. (FEM analysis)
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For example, for a double-edge crack with an elliptical delamination the
normalized bridging stresses, sg/s, are highest for ¢/W = 0.2 and lowest for ¢/W = 0.5.
The same trend is observed for a double-edge crack with circular delamination and a
central crack with both delamination shapes. It is expected that the bridging stress
distribution would begin to increase with increasing crack length far away from the
notch and thisis confirmed in Figures 4.6 and 4.7, where an inflexion point can be seen
and the normalized bridging stress distribution, sg/s, near the crack-tip begins to
increase with increasing crack length, ¢/W, since the effect of the crack on the stresses
becomes dominant over that due to the notch.

For the edge crack in Figure 4.8, the bridging stress distribution is different
from that for the double-edge and central cracks. The normalized bridging stress
distribution, sg/s, for the edge crack increases with increasing crack length, ¢/2wW of 0.3
to 0.5 for both delamination shapes. This can be attributed to the effect of bending
about the crack tip as a result of the unsymmetrical geometry caused by the presence of
the crack and notch. The bending causes higher strains in the fibres with increasing
distance from the crack tip, x, and hence the normalized bridging stress, sg/s increase
as the crack length, ¢/2Wincreases. In this case, the effects on the bridging stress of the
crack opening plus bending dominate over the effects on the bridging stress caused by
the stress concentration near the notch. Also, there does not appear to be an inflexion of
the bridging stress distributions for either the circular delamination or the elliptical
delamination shape in the x/a = 0 to x/a = 1.0 region as was observed for the central and
double-edge crack geometries. This signifies, in this case, that the bending effect of the
edge crack geometry is greater than the effect of the stress concentration caused by the
notch for the whole crack length, resulting in the observed distribution.

The clam of a dominant stress concentration effect over the whole crack
length cannot be made for every delamination shape because the size of the
delamination shape is another factor influencing the bridging stress distribution. For the
circular delamination shape, the normalized bridging stress distribution, sg/s, away
from the crack tip, for ¢/2W= 0.2 is amost equal to the distribution for ¢/2W=0.4. For
the elliptical delamination shape, the normalized bridging stress distribution, sg/s,
away from the crack tip, for ¢/2W = 0.2 is higher than that for ¢/2W = 0.5. The reason
for this can be explained by considering the effects of bending and stress concentration
effects. The contribution of bending on bridging stress is much lower for shorter crack
lengths, but the effects of stress concentration near the notch are much greater for
shorter crack lengths. Therefore, the bending effect on the bridging stress distribution is
sufficient to overcome the stress concentration effect, but only for relatively large crack
lengths compared to the hole size. The bending effect on the magnitude of the bridging
stress also appears to depend on the delamination shape.
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Figure 4.6: Variations of normalized bridging stress, sg/s, with relative distance
from the crack-tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the fully bridged central crack problem with circular and
elliptical delaminations. (FEM analysis)
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Variations of normalized bridging stress, sg/s, with relative distance
from the crack-tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the fully bridged double edge crack problem with circular
and elliptical delaminations. (FEM analysis)

363



B.E. Cudzilo and C. L. Tan/ Electronic Journal of Boundary Elements, VVol. 1, No. 3, pp. 336-403 (2003)

6.0

55 Circular Delamination

c/2W =0.2 Pt
c/2W =0.3
c/2W =0.4

c/2W =0.5

sgls

2.0
00 01 02 03 04 05 06 07 08 09 10

x/a

6.0
Elliptical Delamination
55

= C[2W = 0.2
5.0 e C[2W = 0.3
=C2W = 0.4
= Cc[2W = 0.5

4.5

SB/S

4.0

35

3.0

25
00 01 02 03 04 05 06 07 08 09 10

x/a

Figure 4.8: Variations of normalized bridging stress, sg/s, with relative distance
from the crack-tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the fully bridged edge crack problem with circular and
elliptical delaminations. (FEM analysis)
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For the edge crack, double-edge crack, and central crack, the normalized
bridging stress, sg/s, is higher for an elliptical delamination than for a circular
delamination for all crack lengths, ¢/W or ¢/2W. As a comparison, the central crack
with ¢/W = 0.5 and an dliptica delamination has a normalized bridging stress,
sgls, equal to 4.24 at x/a=0. For the same problem with a circular delamination, sg/s
= 3.64 at x/a = 0. The delamination zone shape and the bridging stress influence each
other such that an increase in the delamination zone size decreases the bridging stress,
and a decrease in the bridging stress increases the delamination zone size. As the
delamination zone size increases, the amount of applied load transferred from the
aluminum layers to the fibre layer decreases due to a smaller area for shear stress
transfer between the metal and fibre layers. Thus, an increasing delamination causes a
decrease in the stress in the fibres, and hence, a lower bridging stress, as shown in the
obtained results.

The normalized bridging stress distribution, sg/s, for the central crack and the
double-edge crack increases more rapidly for the elliptical delamination than for the
circular delamination, with increasing distance away from the crack-tip, x/a. For the
edge crack with an elliptical delamination, the normalized bridging stress, sg/s, for
c/2W = 0.2 is the highest compared to the rest of the crack lengths as mentioned
previously. The normalized bridging stress increases more rapidly for the elliptical
delamination than for the circular delamination, with distance away from the crack tip,
X. Therefore, for a smaller delamination size, the stress in the fibres near the notch is
greater and the influence of the stress concentration is more pronounced. The
normalized bridging stress, sg/s, at x/a = 1.0 for all geometriesis generally larger for an
elliptical delamination than for a circular delamination. As an example, a central crack
with ¢/W = 0.2, sg/s = 9.24 for an €lliptical delamination and only 7.85 for a circular
delamination.

In the 3-D FEM analysis, the stress intensity factors, K;, were calculated using
the displacement extrapolation technique relating the stress intensity factor, K, to the
half-crack vertical displacement, v, of the crack face by, Guinea, et al. (2000):

K = HV2p sev 6
= o (42)
4 &g
where, r = distance from the crack-tip, and
i E plane stress
|
H=rt . 4.3
! E 5 plane strain “3
I @ n?

E = Young's Modulus
n = Poisson’s Ratio

This was a well-established technique in FEM fracture mechanics analysis
before the development of special formulas for the determination of stress intensity
factors. The reason for using this is because, although MSC/Nastran v70.7 has an
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isotropic, 3-D crack-tip element, it contains a program bug which precludes the direct
evaluation of these values when isotropic and anisotropic material properties are defined
for different elementsin the FE analysis.

4.2.2 BEM Analysis
Bridging Stress Distribution

In the analysis, the bridging stress at the crack mouth, sg* was again
normalized with respect to the remote applied stress, s for the three physical problems
considered. The computed normalized bridging stress, sg*/s, is plotted in Figures 4.9
to 4.11 as a function of the normalized crack length, ¢/W or ¢/2W. These figures also
show the variation of sg*/s with the fibre-bridging power-law indices, n and m of 0 to
1.0, and circular and elliptical delamination zone shapes.

For the central crack and the double-edge crack problems, the normalized
bridging stress, sg*/s, decreases with increasing crack size, ¢/W, for both delamination
shapes. For example, for a central crack with an elliptical delamination and n = 0.5, at
c/W=0.2, sg*/s =4.55, and at ¢/W = 0.5, sg*/s = 3.40. This decreaseis attributed to
the stress concentration near the hole where it has a larger influence on smaller crack
lengths, and hence sg*/s is highest for ¢/W = 0.2, and decreases as ¢/W increases. This
same trend was observed in the results for the three dimensional FEM analysis for the
bridging stress distributions.
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Figure 4.9: Variations of normalized bridging stress, sg'/s, with relative crack
length, c/W, for the ARALL central crack problem with circular and
eliptical delaminations.
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Figure 4.10: Variations of normalized bridging stress, sg /s, with relative crack
length, c/W, for the ARALL double edge crack problem with
circular and elliptical delaminations.

The normalized bridging stress, sg*/s, for the central and double-edge cracks
increases with increasing power-law index n and m. For a double-edge crack with a
circular delamination and ¢/W = 0.5, sg*/s for n =0is 1.80, whilefor n = 1.0 it is equal
to 2.38. The normalized bridging stress for m = 0.5 and 1.0 is generally between the
bridging stress for n = 0 and 0.5, for both delamination shapes and all crack lengths.
The highest normalized bridging stressis for n = 1.0, which represents a linear bridging
stress distribution with decreasing stresses toward the crack-tip.

For an edge crack problem, the normalized bridging stress, sg*/s, decreases
from c/2W = 0.2 to ¢/2W = 0.3 and then increases as the crack length increases from
c/2W=0.3to ¢/2W=0.5. Thistrend is again the same as the one predicted by the three
dimensional FEM analysis for the normalized bridging stress distributions. As an
example, for an eliptical delamination and n = 0.5, the normalized bridging stress,
sg*/s is 5.43 at ¢/2W = 0.2 and decreases to 5.09 at ¢/2W = 0.3 and then increases to
5.25 and 5.56 at ¢/2W = 0.4 and 0.5, respectively.

The normalized bridging stress, sg*/s, for the edge crack increases as the
power-law index, m and n increases, for both delamination shapes. The highest
normalized bridging stress for the edge crack is also represented by the index n=1.0. It
should be noted that for the edge crack a constant bridging stress represented by n=m=
0 does not show a decrease around ¢/2W = 0.3 but only increases from ¢/W= 0.2 to 0.5.
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Figure 4.11: Variations of normalized bridging stress, sg /s, with relative crack
length, c/2W, for the ARALL edge crack problem with circular and
eliptical delaminations.

For all geometries, the delamination zone shape influences the bridging
stresses such that the normalized bridging stress, sg*/s, is higher for an elliptical
delamination as compared to a circular delamination. This is the same trend as seen in
the FEM analysis in the previous section. Comparing an edge crack with ¢/2W = 0.2
and n = 1.0, sg*/s = 5.872 for an dlliptica delamination, while for a circular
delamination, sg*/s = 3.776.

In general, the 3-D FEM results lie between a constant distribution given by n
=0, and alinear distribution given by n = 1.0. The 2-D BEM results also lie between
these two bounds of power-law index, being closer to n = 0.5. The bridging stresses
generally decrease toward the crack-tip and it can be concluded that the profiles are that
of a‘strain-hardening’ material. Therefore, the power-law index range of O£ n £ 1.0,
as obtained by the 2-D BEM analysis and confirmed by the 3-D FEM analysis,
describes the variation of bridging stresses in fibre-metal laminates with notches. Now,
it remains to be seen if the results for the stress intensity factors are in agreement with
this determined power-law index range.

Stress Intensity Factors
The mode | stress intensity factor, K;, was calculated using the traction

formula, equation 3.34, in the two- dimensional boundary element method (BEM)
analysis. This stress intensity factor was normalized by s +/pc, and plotted with

368



B.E. Cudzilo and C. L. Tan/ Electronic Journal of Boundary Elements, VVol. 1, No. 3, pp. 336-403 (2003)

respect to the normalized crack length, ¢/W or ¢/2W in Figures 4.12 to 4.14. These

figures show the normalized stress intensity factors, K, /s «/pc, for the edge crack,

double-edge crack, and central crack with circular and elliptical delamination zone
shapes and power-law indices, n and m, equal to 0, 0.5, and 1.0.

The normalized stress intensity factor, K, /s +/pc, increases gradually with

increasing crack length, ¢/W for the central crack and the double-edge crack geometries
for both delamination shapes and power-law indices, n and m, equal to 0.5 and 1.0. The
normalized stress intensity factor dlightly decreases from ¢/W = 0.2 and then increases
up to ¢/W = 0.5 for the assumed constant bridging stress distribution represented by n =

m = 0. The normalized stress intensity factor, K, /s+/pc, aso increases with

increasing power-law index n, for both the circular and €elliptical delamination shapes.
For both delamination shapes, the stress intensity factors for the power-law index m =
0.5 and 1.0 are amost the same in magnitude and significantly lower than those for the
other power-law indices.

Circular Delamination Elliptical Delamination
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s 4 g0 g 0w
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Figure 4.12: Variations of normalized crack-tip stress intensity factor, K /s (pc)”,
with relative crack length, ¢/W, for the ARALL central crack
problem with circular and elliptical delaminations.
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Figure 4.13; Variations of normalized crack-tip stress intensity factor, K /s (pc)”,
with relative crack length, c/W, for the ARALL double edge crack
problem with circular and eliptical delaminations.

The normalized stress intensity factor, K /s «/pc, for the edge crack, also

increases as the crack length, ¢/2W increases. This increase is more rapid than that for
the central and double-edge cracks. The normalized stress intensity factors also
increase as the power-law index n increases, with the exception of an elliptical
delamination shape at crack sizes of ¢/2W > 0.3, where the constant distribution
represented by n = m = 0 is higher than the one for n = 0.5. In the case of an elliptical
delamination shape, the magnitude of the normalized stress intensity factor obtained
using m = 0.5 and 1.0 is aimost zero for al crack lengths. Also, the magnitude of the
normalized stress intensity factor is significantly smaler for m = 0.5 and 1.0 as
compared to that for the power law index n.

The BEM results in Figures 4.12 to 4.14 show that the delamination zone
shape has an influence on the stress intensity factor for the crack in the metal layer. A
smaller delamination zone size results in lower crack-tip stress intensity factors. This
can be seen, for example, in the edge crack problem with n = 0.5 and ¢/W = 0.5 where

K, /s v/pc = 0.858 for an elliptical delamination and K, /s v/pc = 1.265 for acircular
delamination.
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Figure 4.14: Variations of normalized crack-tip stress intensity factor, K /s (pc)”,
with relative crack length, c/2W, for the ARALL edge crack problem
with circular and elliptical delaminations.

The 2-D BEM results suggest that the bridging stress distribution represented
by m = 0.5 and m = 1.0 is not applicable in the two dimensional analysis because it
cannot predict accurate values of stress intensity factor. A possible explanation for this
is that the stresses in the fibres are higher with decreasing distance from the hole due to
the stress concentration there, but the m index assumes a decreasing stress profile
towards the hole. As aresult, the stress intensity factors are very small for the power-
law index, m> 0.

The normalized stress intensity factors from a three-dimensional FEM analysis
are plotted with the two-dimensional BEM stress intensity factors from FEM and lie
between the power law index n = 0 and n = 1.0 for al crack geometries and
delamination shapes. The FEM results are generaly closer to n = 0.5 and thus this
index best describes the variation of stress intensity factors with crack length, ¢/W or
c/2W. The percentage differences between the FEM computed normalized stress
intensity factors, Ki/s (pc)” and those obtained from the 2-D BEM analysis with n = 0.5
are listed in Table 4.2 for all the geometric cases treated. With some exceptions, the
percentage deviations were generally less than about 6 percent; the maximum deviation
was 12.3%. This finding is consistent with the findings of Cain and Tan (1997). From
the results obtained, it was also found that the uniform bridging stress distribution (n =
0) proposed by Marissen (1988), for example, can lead to a 35% underestimation of the
stress intensity factor for the edge crack problem with an elliptical delamination and
about 22% for the corresponding circular delamination.
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Table 4.2: Computed normalized stressintensity factorsfor the FEM analysis and
the BEM analysiswith n = 0.5.

Elliptical Delamination Circular Delamination
n=0.5
BEM FEM % diff BEM FEM % diff
Geometry c/W | Kis(pc)”? | Ki/s(pc)*? Ki/s(pc)*? | Ki/s (pc)*?
0.2 0.660 0.683 3.4 0.807 0.848 4.8
0.3 0.670 0.642 -4.4 0.820 0.824 0.5
Central
0.4 0.695 0.640 -8.6 0.850 0.836 -1.7
0.5 0.730 0.650 -12.3 0.897 0.864 -3.8
0.2 0.676 0.703 3.8 0.830 0.881 5.8
0.3 0.674 0.655 -2.9 0.831 0.853 2.6
Double Edge
0.4 0.684 0.644 -6.2 0.843 0.850 0.8
0.5 0.703 0.647 -8.7 0.868 0.862 -0.7
0.2 0.770 0.800 3.8 0.971 1.017 45
Edae 0.3 0.811 0.785 -3.3 1.072 1.069 -0.3
g 0.4 0.845 0.798 -5.9 1.178 1.154 -2.1
0.5 0.858 0.802 -7.0 1.265 1.223 -3.4

The stress intensity factors obtained by the FEM analysis therefore confirm the
range of those obtained by the two-dimensiona BEM analysis. Therefore, it can be
concluded that a three-dimensional fibre-metal laminate can be modelled using a two-
dimensional BEM analysis yielding a fibre-bridging index range which adequately
describes the variations and magnitudes of the bridging stresses and stress intensity
factors. The two-dimensional analysis is significantly less time consuming and less
labour intensive than the corresponding three-dimensional analysis.

5.0 Partial Bridging of Notched Fibre-Metal Laminates

It was shown in the previous Section for the full bridging analysis of cracks
emanating from a hole, that the stresses in bridging fibres near the hole are very high.
This could lead to fibre failure in that region and result in partial bridging of the crack.
It is therefore of interest to obtain the bridging stresses and stress intensity factors for
such situations and compare these values with the full bridging case.

Two cases of partial bridging were analysed in this study. The first case was
that of 75% of the crack length being bridged by fibres, and the second case was that of
50% of the crack length being bridged by fibres. Thisimplies that 25% and 50% of the
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fibres have failed in the first and second cases, respectively. Also, an unbridged
laminate was analysed by FEM and BEM to quantitatively determine the benefit of fibre
bridging in reducing the crack-tip stress intensity factors.

The same three rectangular plates considered in Section 4 were analysed here.
The loading conditions and geometry were the same as defined in Section 4.1 and
shown in Figure 4.1. The bridging length, b, was varied depending on the amount of
bridging present. For the 75 % bridging case, b was set equal to 0.75a, and for 50 %
bridging b was equal to 0.5a. The mesh in the two-dimensional BIE analysis was the
same as the one used for the full bridging case for a given cracked plate, with the
elementsin the 25% and 50% un-bridged regions of the crack now being traction free.

As before, two delamination shapes, quarter-circular and quarter-elliptical with
a major-minor axis ratio of 2, were used in the partial bridging analysis. This assumes
that the delamination shape present in full bridging will remain the same for partial
bridging. The delamination zone size, d, was taken at the last intact fibre away from the
crack-tip in the bridged zone. For the 75% and 50% bridging cases, d was determined
from an equation of a circle for the circular delamination, and an equation of an ellipse
with a 2-1 major-minor axis ratio for the elliptical delamination.

The meshes used in the three-dimensional FE analysis of partial bridging were
the same as those used for full bridging in Section 4. The nodes of the elements in the
unbridged region in the fibre layer were unrestrained to represent the failed fibres. The
same fibre-metal laminate material as before, namely, ARALL 2-2/1, was considered in
the partia bridging analysis.

5.1 Results and Discussion

The bridging stress and the stress intensity factor results for an edge crack,
double edge crack, and central crack with 75% and 50% partial bridging are presented
in this section. The results of an unbridged fibre-metal laminate for al the cracked
geometries are also presented. A comparison of the bridging stresses and stress
intensity factors is made between the case of full bridging and that of partia bridging or
no bridging at al. The bridging stress and stress intensity factor results obtained by a
BEM analysis are also compared to those obtained from the 3-D FEM analysis.
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5.1.1 FEM Analysis
Bridging Stress Distribution

The bridging stress, sg, was taken along the centreline of the fibre layer and
normalized with respect to the remote applied stress, s. The variations of normalized
bridging stress, sg/s, with relative distance, x/a, from the crack tip are plotted in
Figures 5.1 to 5.6. These figures show the results for a central, double edge, and edge
crack with 75% and 50% partial bridging zones, and relative normalized crack lengths,
c/W or c/2W. The material properties for the results presented correspond to those of
ARALL. The normalized bridging stress, sg/s, for al crack geometries increases very
rapidly near x/a = 0.75 and x/a = 0.50 for the 75% and 50% partial bridging cases,
respectively. This is due to the singularity at that location as a result of a crack now
present in the fibre layer. The normalized bridging stress also increases near the crack
tip, corresponding to x/a = 0. As discussed in Section 4, this is likely due to the
enforced singularity of the quarter-point crack-tip elements in the aluminum layer
adjacent to the mid-point elements in the fibre-reinforced layer in the numerical model.

In the 75% and 50% partial bridging cases, the normalized bridging stress for
the central crack and double edge crack decreases as the relative crack length, c/W
increases. For the edge crack, the normalized bridging stress increases as c/2W
increases. These trends show that the influence of the stress concentration on the
bridging stresses is the same as discussed in the previous chapter for the case of full
bridging. More specificaly, the stress concentration near the notch increases the
bridging stresses along the crack and the effect is more pronounced with shorter crack
lengths. The trends for the edge crack problem differ than those for the other
geometries due to the bending effect arising from its geometry. The bending effect is
the dominating factor for larger crack lengths. As a result, for the edge crack, the
bridging stresses increase with increasing crack length.

For both partial bridging cases studied here, the normalized bridging stress is
higher for the elliptical delamination than for the circular delamination. Again, this
trend is the same as that seen in fully bridged laminates in the previous chapter and this
is due to a greater amount of stress transferred from the metal layers to the fibre layer
for asmaller delamination size.
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Figure 5.1: Variations of normalized bridging stress, sg/s, with relative distance
from the crack tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the 75% partially bridged central crack problem with
circular and elliptical delaminations. (FEM Analysis)
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Figure 5.2: Variations of normalized bridging stress, sg/s, with relative distance
from the crack tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the 75% partially bridged double edge crack problem with
circular and elliptical delaminations. (FEM Analysis)
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Figure 5.3: Variations of normalized bridging stress, sg/s, with relative distance
from the crack tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the 75% partially bridged edge crack problem with circular
and elliptical delaminations. (FEM Analysis)
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Figure 5.4: Variations of normalized bridging stress, sg/s, with relative distance
from the crack tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the 50% partially bridged central crack problem with
circular and elliptical delaminations. (FEM Analysis)
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Figure 5.5: Variations of normalized bridging stress, sg/s, with relative distance
from the crack tip, x/a 3 0, along the centreline of the aramid-epoxy
layer, for the 50% partially bridged double edge crack problem with
circular and elliptical delaminations. (FEM Analysis)
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Figure 5.6 Variations of normalized bridging stress, sg/s, with relative distance
from the crack tip, x/a ® 0, along the centreline of the aramid-epoxy
layer, for the 50% partially bridged edge crack problem with
circular and elliptical delaminations. (FEM Analysis)
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The variations of percentage difference between partial bridging and full
bridging is shown in Figures 5.7 to 5.12. These figures show that the normalized
bridging stress increases as the relative bridging zone length, b decreases. As an
example, for the edge crack at x/a = 0, with an elliptical delamination and ¢/2W = 0.5,
sg/s = 4.37 for full bridging, sg/s = 5.39 for 75% bridging, and sg/s = 7.46 for 50%
bridging.

For the central crack and double edge crack with 75% partial bridging, the
differences of the bridging stress between the full bridging case are approximately in the
range of 5% to 7%, and 7% to 13% for the circular delamination and elliptical
delamination, respectively. For the 50% partial bridging, the differences between the
full bridging case increase to about 11% to 14%, and 17% to 26% for the circular
delamination and elliptical delamination, respectively. The bridging stresses for the
edge crack problem with 75% bridging has a percentage difference from the full
bridging case of approximately 7% to 20% for circular delamination, and 10% to 25%
for elliptical delamination. At 50% bridging, the corresponding ranges of differences
increase to 15% to 35% and 20% to 50%. It can be seen from these results that a
decrease in the amount of fibres bridging the crack increases the bridging stress in the
remaining fibres. With less fibres bridging the crack, the remaining fibres will have
higher bridging stresses for an equal magnitude of applied stress.

Stress Intensity Factors

The percentage difference of K, /s </pc between the full bridged and each

partial bridging case of the different crack configurations are shown in Tables 5.1 to 5.3.
These results show that the normalized stress intensity factor increases as the bridging
length is decreased as to be expected. A decrease in the amount of fibres bridging the
crack causes the stress intensity factor in the aluminum layer to increase because the
crack is able to open up more for a decreased bridging length.
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Figure 5.7:
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Percentage difference between 75% and 100% bridging, for the
variations of the normalized bridging stress, sg/s, with relative
distance from the crack-tip, x/a, along the centreline of the aramid-
epoxy layer. Central crack problem with circular and elliptical

delaminations.
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Figure 5.8. Percentage difference between 75% and 100% bridging, for the
variations of the normalized bridging stress, sg/s, with relative
distance from the crack-tip, x/a, along the centreline of the aramid-
epoxy layer. Double Edge crack problem with circular and €lliptical
delaminations.
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Figure 5.9
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Percentage difference between 75% and 100% bridging, for the
variations of the normalized bridging stress, sg/s, with relative
distance from the crack-tip, x/a, along the centreline of the aramid-
epoxy layer. Edge crack problem with circular and dliptical
delaminations.
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Figure 5.10: Percentage difference between 50% and 100% bridging, for the
variations of the normalized bridging stress, sg/s, with relative
distance from the crack-tip, x/a, along the centreline of the aramid-
epoxy layer. Central crack problem with circular and édliptical
delaminations.
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Figure 5.11: Percentage difference between 50% and 100% bridging, for the
variations of the normalized bridging stress, sg/s, with relative
distance from the crack-tip, x/a, along the centreline of the aramid-
epoxy layer. Double edge crack problem with circular and elliptical
delaminations.
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Figure 5.12: Percentage difference between 50% and 100% bridging, for the
variations of the normalized bridging stress, sg/s, with relative
distance from the crack-tip, x/a, along the centreline of the aramid-
epoxy layer. Edge crack problem with circular and dliptical

delaminations.
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Table 5.1: Percentage difference of normalized stress intensity factors, K,/s (pc)*,
between partial bridging and full bridging obtained from BIE analysis
for different relative crack lengths, c¢/W, and power-law indices:
Central crack with circular and €elliptical delamination.

Elliptical Delamination Circular Delamination

75% 50% 0% 75% 50% 0%
Index c/W % diff % diff % diff % diff % diff % diff
n=m=0 0.2 114 21.0 43.5 3.6 7.9 32.8
0.3 13.1 23.8 47.9 29 7.3 34.9

0.4 14.8 26.3 50.1 35 8.3 36.2

0.5 15.9 28.1 51.8 3.7 9.2 37.3

n=05 0.2 5.2 13.2 38.4 -1.5 -2.0 24.6
0.3 5.5 13.0 38.3 -1.7 2.4 245

0.4 6.0 13.2 38.5 -1.2 -2.0 24.8

0.5 6.0 13.6 39.6 -1.4 -1.9 25.7

n=1.0 0.2 31 8.7 27.8 -1.3 -1.5 175
0.3 3.3 8.8 28.1 -1.5 -1.9 17.5

0.4 3.9 9.3 28.7 -1.1 -1.5 18.0

0.5 4.2 9.9 30.0 -1.0 -1.3 19.0

Table 5.2: Percentage difference of normalized stress intensity factors, K,/s (pc)*,
between partial bridging and full bridging obtained from BIE analysis
for different relative crack lengths, c¢/W, and power-law indices:
Double edge crack with circular and elliptical delamination.

Elliptical Delamination Circular Delamination

75% 50% 0% 75% 50% 0%
Index c/W % diff % diff % diff % diff % diff % diff
n=m=0 0.2 11.3 20.9 43.1 3.6 8.2 32.7
0.3 13.4 24.6 48.4 3.2 8.3 35.6

0.4 15.1 27.1 50.9 3.8 9.3 37.1

0.5 16.5 29.0 52.7 4.1 10.0 38.1

n=05 0.2 5.3 13.6 39.0 -1.5 -1.8 25.1
0.3 5.6 13.7 39.6 -1.7 2.1 255

0.4 6.0 14.1 39.7 -1.4 -1.7 25.7

0.5 6.1 14.3 40.3 -1.3 -1.6 26.3

n=1.0 0.2 3.2 9.0 28.3 -1.3 -1.4 17.8
0.3 35 9.4 29.2 -1.6 -1.7 18.3

0.4 4.1 10.0 29.8 -1.1 -1.2 18.8

0.5 4.2 10.3 30.4 -1.1 -1.1 19.4
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Table 5.3: Percentage difference of normalized stress intensity factors, K,/s(pc)*,
between partial bridging and full bridging obtained from BIE analysis
for different relative crack lengths, ¢/2W, and power-law indices:
Edge crack with circular and elliptical delamination.

Elliptical Delamination Circular Delamination
75% 50% 0% 75% 50% 0%

Index c/l2W % diff % diff % diff % diff % diff % diff
n=m=0 0.2 11.9 21.6 42.3 5.1 10.9 33.2
0.3 17.0 29.8 50.5 7.9 16.5 40.0

0.4 23.7 38.5 57.2 13.6 25.3 47.1

0.5 31.0 47.2 63.4 20.9 35.6 54.8

n=05 0.2 7.1 17.2 43.5 -0.7 0.2 28.8
0.3 10.4 23.1 51.1 0.4 3.4 35.3

0.4 14.6 30.8 59.9 3.0 9.0 44.1

0.5 18.3 38.9 69.6 5.8 16.1 55.1

n=1.0 0.2 4.8 12.4 329 -0.7 0.2 21.2
0.3 7.8 18.1 40.9 0.1 2.8 27.3

0.4 11.8 25.6 50.6 2.3 7.8 36.0

0.5 15.9 34.3 61.6 5.1 14.6 47.3

5.1.2 2-D BEM Analysis

Bridging Stress Distribution

The normalized bridging stress, sg /s, distribution for ARALL as a function of
normalized crack length, c/W or c/2W, is plotted in Figures 5.13 to 5.15 for each of the
cases treated. These figures show the variations of sg'/s for 75% and 50% partial
bridging cases with varying fibre-bridging power-law indices, n and m, and circular and
elliptical delamination zone shapes.

The variations of normalized bridging stress, sg'/s, with crack length, ¢/W (or
c/2W) are the same for all the partial bridging cases as they were for the full bridging
case discussed in Section 4. However, the magnitudes of the bridging stresses increase
as the bridging length, b, is decreased. The percentage differences of the stress between
the 75% and 50% partial bridging cases and that for full bridging are tabulated in Tables
5.7 to 5.9, for the central, double edge, and edge cracks. The trend in percentage
difference of the normalized bridging stress for the partial bridging cases compared to
full bridging is shown graphically in Figure 5.16 for the central, double edge, and edge
crack problemswith an elliptical delamination and power-law index, n = 0.5.

The two-dimensional BIE results aso show an increase of the normalized
bridging stress, sg /s, with a decreasing amount of fibres bridging the crack. The
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largest percent difference of 49.4% is for the edge crack with 50% bridging, circular
delamination, ¢/2W = 0.5, and power-law index m= 0.5.

Circular Delamination Elliptical Delamination
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® »
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Figure 5.13: Variations of normalized bridging stress, sg /s, with relative crack
length, ¢/W, for the ARALL central crack problem containing
circular and dlliptical delamination with (a) 75% partial bridging,
and (b) 50% partial bridging.
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Figure 5.14: Variations of normalized bridging stress, sg'/s, with relative crack
length, ¢/W, for the ARALL double edge crack problem containing
circular and dlliptical delamination with (a) 75% partial bridging,
and (b) 50% partial bridging.
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Figure 5.15: Variations of normalized bridging stress, sg'/s, with relative crack
length, c/2W, for the ARALL edge crack problem containing
circular and dlliptical delamination with (a) 75% partial bridging,
and (b) 50% partial bridging.
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Figure 5.16: Percentage difference between the partial bridging cases and full
bridging of the normalized bridging stress, sg*/s, for the central,
double edge, and edge crack problem. Power-law index, n = 0.5 and
an dliptical delamination. (BEM Analysis)

Stress Intensity Factors

The normalized crack-tip stress intensity factor, K, /s +/pc, obtained from

the BIE analysis are plotted with respect to the normalized crack length, ¢/W or ¢/2W, in
Figures 5.17 to 5.19, for the central, double edge, and edge cracks, respectively. In
these figures, the normalized crack-tip stress intensity factor results from the three-
dimensional FEM analysis are also included for comparison.

The normalized stress intensity factor, K, /s +/pc, generaly increases with

increasing power-law index n and m, and crack length, ¢/W or ¢/2W, for the cracked
geometries considered with the partial bridging. The delamination zone shape aso
influences the magnitude of the normalized stress intensity factor; a smaller
delamination size results in lower crack-tip stress intensity factors. This can be seenin
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Tables 5.1 to 5.3 and Figures 5.17 to 5.19, that the normalized stress intensity factors
are lower for the elliptical delamination than for the circular delamination for a given
crack size.

It can also be seen for these results that as the length of the bridging zone, b,
decreases, the normalized stress intensity factors generaly increase. This is to be
expected, for the crack is able to open up more when the amount of bridging fibres
decreases. Comparing, for example, a central crack with n = 0.5, eliptical delamination

and c/W = 0.5, K, /s «/pc = 0.730 for 100% bridging, K, /s vpc = 0.777 for 75%

bridging and K, /s ~/pc = 0.845 for 50% bridging. Compared to 100% bridging, this
corresponds to an increase of 6.0% and 13.6% for the 75% and 50% partial bridging
cases, respectively. Figure 5.20 shows the percentage difference of the normalized

stress intensity factor, K, /s v/pc , between the partial bridging cases and full bridging
for the central, double edge, and edge crack problems with an elliptical delamination.
This figure also shows the trends of the normalized stress intensity factors for 75% and
50% bridging between the results obtained from the BIE and FEM analyses.

The normalized stress intensity factors, K, /s +/pc, for an unbridged ARALL

central crack, double edge crack, and edge crack problem are shown in Figure 5.21. For
the previous example of the central crack, with n = 0.5, elliptical delamination and c¢/W
= 0.5, the normalized stress intensity factor for the unbridged case is 1.21, which is
39.6% higher than the corresponding value for full bridging. Figure 5.21 also shows the
normalized stress intensity factors from the FEM analysis calculated in the aluminum
layer and the fibre-epoxy layer. It is expected that the stress intensity factors in the fibre
layer should be less than those in the aluminum layer since the restraint of fibres on
crack opening is greater than for auminum. This is confirmed in these figures where
the crack-tip normalized stress intensity factors are much lower in the fibre layer than
the aluminum layer.

For the stress intensity factors calculated in the auminum layer, the BEM
results are approximately 10% lower than the FEM results. For the stress intensity
factors calculated in the fibre-epoxy layer, the BEM results are approximately 25 to
30% higher than the FEM results. Therefore, the two-dimensional BEM analysis
predicts the crack-tip stress intensity factors in the aluminum layer to within 10% of the
actual three-dimensional resullt.
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Figure 5.17: Variations of normalized crack-tip stress intensity factor, K /s (pc)®,
with relative crack length, ¢/W, for the ARALL central crack
problem containing circular and elliptical delamination with (a)
75% partial bridging, and (b) 50% partial bridging.
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Figure 5.18: Variations of normalized crack-tip stress intensity factor, K,/s (pc)”,
with relative crack length, c/W, for the ARALL double edge crack
problem containing circular and elliptical delamination with (a)
75% partial bridging, and (b) 50% partial bridging.
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Figure 5.19: Variations of normalized crack-tip stress intensity factor, K /s (pc)”,
with relative crack length, c¢/2W, for the ARALL edge crack
problem containing circular and elliptical delamination with (a)
75% partial bridging, and (b) 50% partial bridging.
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Figure5.20: Percentage difference between the partial bridging cases and full
bridging of the normalized stressintensity factor, K /s (pc)*?, for the
central, double edge, and edge crack problem with an elliptical
delamination; (a) BEM analysis, and (b) FEM analysis.
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Figure 5.21: Variations of the normalized stress intensity factor, K /s (pc)”, with
relative crack length, ¢/W or ¢/2W, for the ARALL (a) central crack
problem, (b) double edge crack problem, and (c) edge crack

problem. Results from the BEM and the FEM for an unbridged
fibre-metal laminate.
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6.0 Conclusions

The bridging mechanism in fibre-metal laminates has been described and because
of its simplicity, the stress intensity approach with power-law expressions for bridging
stresses has been chosen to analyse fibre-metal laminates. The three dimensional
bridging mechanism in fibre-metal laminates has been reduced to a two-dimensional
one with the assumption of homogenised material properties through the thickness, and
the bridging stresses as a closing pressure on the crack flanks. Since these bridging
stresses are initially unknown, this two-dimensional, mathematically non-linear problem
has to be solved iteratively and a numerical technique to solve for these unknown
bridging stresses has been presented.

The two-dimensional analysis was carried out using the boundary element method
(BEM) and a review of this method for anisotropic linear elasticity has been presented
along with some of the principles of linear-elastic fracture mechanics (LEFM). A three-
dimensional analysis of three rectangular fibre-metal laminate plates with cracks
emanating from the edge of a circular cut-out and under remote uniform tension in the
fibre direction, was performed using FEM. The applicability of a two-dimensional
analysis using BEM was presented along with the discussion of the influence of varying
crack size, geometry, bridging stress profile and delamination zone size on the bridging
stress and stress intensity factors. A comparison was then made between the results
obtained from the 2-D BEM analysis and the 3-D FEM analysis.

The results of the BEM and FEM analysis for the case of full bridging can be
summarized as follows:

- A high normalized bridging stress, sg/s, at the crack mouth, was obtained
indicating high strain in the fibres there and therefore the likelihood of fibre
failure near the edge of the hole.

- The high normalized bridging stress is generally confined to a 5% to 10%
region of thetotal crack length.

- The normalized stress intensity factors also increase with increasing power-law
index, n and m, but the power-law index m does not accurately predict stress
intensity factors and hence cannot be applied to the analysis of notched fibre-
metal laminates with cracks.

- The FEM results lie between O £ n £ 1.0 of the BEM results, but are generally
closer to n = 0.5, which describes a decreasing s g/s towards crack tip
indicating the behaviour of a‘strain-hardening’ material.

The effect of the extent of fibre-bridging on the bridging mechanism has been
examined in this study. Thisinvestigation considered 75% and 50% of the crack being
bridged by fibres and the results from the FEM and BEM analysis were presented. The
conclusions from the partia bridging analysis are itemized below.

- The normalized bridging stress, sg/s increases with a decreasing bridging
length, b, but the normalized stress intensity factors, K /s (pc)” increase with a
decreasing bridging length due to more opening of the crack faces as a result of
less fibres bridging the crack.
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- The normalized bridging stress, sg/s, for 75% and 50% bridging was found to
be 5% to 13% and 11% to 26% higher than full bridging, respectively, for the
central and double edge crack problems. For the edge crack problem, the
corresponding differences are about 7% to 25% and 15% to 50% higher than
full bridging case.

The benefit of fibre-bridging in fibre-metal laminates was quantified with the FEM
and BEM analysis of an unbridged crack. The stress intensity factors were found to be
much higher when there is no bridging of the crack as compared to full bridging, and
even some partial bridging. The study has clearly demonstrated that the simplified 2-D
BEM analysis can provide reasonable estimates of the stress intensity factor for cracks
in fibre-metal laminates with stress concentrations. It was less time consuming and
much easier to obtain the estimates than a corresponding 3-D finite element analysis.
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