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Abstract 
    An advanced boundary element method (BEM) for 2-D steady-state thermal 
analysis of components with thermal barrier coating (TBC) is presented in this paper. 
First, a scheme of evaluating the nearly singular integrals in stress analysis of a thin body 
was extended to the thermal analysis of components with TBC. Then the BEM 
formulation for thermal analysis of multi-layered structures was developed.  
 
    Next, an advanced BEM was developed for 2-D interfacial stress analysis of 
components with TBC. The non-linear transformation scheme in stress analysis of thin-
body under traction load by BEM was extended to evaluate the nearly singular integral in 
BEM for thermal and centrifugal stress analysis. Then BEM formulation for multi-layer 
structure under thermal, centrifugal and traction loads was presented.  
 
       Several numerical examples of 2-D thermal analyses and interfacial stress analyses 
of components with TBC were analyzed with only 32 boundary elements. The accurate 
numerical results can be obtained even when the ratio of the coating thickness to element 
length approached 10 9− . The maximum relative percentage errors of interfacial tangent 
tension stresses under a complex temperature field, traction and centrifugal loads were 
0.08%, 0.13% and 0.23%, respectively,. The present BEM will be an efficient tool for 
TBC design and TBC peeling-failure analysis. 
 
1. Introduction 
        As the demand on aircraft mobility, low cost and reliability increases, the demand 
on aero-engine performance and reliability increases as well. Therefore aero-engine with 
a large thrust and a high ratio of thrust to weigh is needed. Increasing temperatures in the 
front of a turbine is one of the most efficient way to increase thrust and ratio of thrust to 
weigh. When the temperature before a turbine is higher than 1300 K , a blade made of 
single metal can not endure such a high temperature.  By use of thermal barrier coating 
technology, the highest temperature on substance can decrease 100-170 C0 ]1[ . But 
whenever thermal barrier coating peels off, the substance behind it will over-heat and 
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burn out. It is important to have an efficient numerical analysis tool for designing and 
analyzing thermal barrier coated components to optimum the distribution of their 
temperature and stresses, to have the coating system a durable life. Nowadays, the most 
commonly used stress analysis tools of coated components were engineering simplified 
method ]1[ , finite element method ]4,3,2[  and boundary element method ]5[ . Using the 
engineering simplified method ]1[ , the stress and strain field of substrate was first 
obtained without considering the existing coatings.  Then stress and strain fields of 
coatings were approximated according to the continuity condition of the substrate and the 
coatings. The scheme is simple and easy to use, but its accuracy and effectiveness depend 
on the stiffness ratio of the coatings to the substrate. And usually, a constant stress 
distribution in the coating is assumed along the thickness direction. Finite element 
method is one of the most powerful numerical tools. But for the stress analysis of coating 
systems, the shell element can not be used, as the shear and the normal stresses on the 
interface can not be simulated by shell elements. When using the brick element to 
analyze stresses of the coating system, mesh with a similar size to the coating thickness 
has to be used, as the sizes in three dimensions of a brick element should be in a suitable 
range ]4,3,2[ .  Therefore very fine elements should be used with a very large number of 
elements and huge demand of the storage space and CPU time for the computation. When 
using the conventional BEM to analyze stresses of coating system, a problem with nearly 
singular integrals will be encountered. Similarly to the finite element method, very fine 
boundary elements, with a size of the coating thickness, should be used. Therefore, the 
stress analysis of the coating system by conventional BEM was not commonly seen in the 
literatures, until the research of BEM for stress analysis of a thin body achieved a 
breakthrough ]6,5[ recently. Nowadays, thermal stress analysis of coating systems by the 
BEM for thin body stress analysis was limited to problems with a constant temperature 
field ]7[ , as an effective numerical method for thermal analysis of the coating system was 
needed, on which less research works were found in the literature. Before, the thermal 
analysis of a coating system was done by the finite difference method ]8[ , but it is 
difficulty to analyze a problem with a complex shape. When doing the thermal analysis 
of a coating system by FEM, very fine elements, with sizes of the coating thickness, 
should be used, as stress analysis of the coating system by FEM, which was inefficient ]3[ . 
In order to perform the thermal stress analysis of the coating system, the scheme to 
evaluate the nearly singular integral in thin body stress analysis ]6[  will be improved and 
extended to thermal stress analysis of the coating system under centrifugal load and 
complex temperature fields. Furthermore, a BEM for thermal analysis of the coating 
system is proposed. Finally, several numerical examples of thermal analysis and thermal 
stress analysis of the coating system are given to demonstrate the efficiency of the 
method presented in this paper. 
 
2.  Boundary integral equations for thermal analysis and treatment of 
nearly singular integrals 
        Boundary integral equations for steady state temperature field analysis of an 
isotropy body can be expressed as ]9[  
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2.1 Treatment of nearly singular integrals 
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From integral (3)，one can  see no mater how 
close the source point 0P  to the integral element, 
a exact solution of the integral (3) can be obtained 
directly. In equation (2)， '

0P  is the closest point on 

the integral element to the source point 0P （see 
Fig.1）. 
 
        In the natural coordinate system，the origin point 0 of the local coordinate was 
chosen  at  '

0P （see Fig.2）.  When  the source point 0P  approaches  the  point '
0P ，

using the Taylor’s  extension of  the shape function，the principle part of the first term in 
the right hand side of equation（2）is r/ξ ，and can be expressed as 
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Fig.1  Local polar coordinate system of 
an integral element 
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where e is distance between source point 0P  and the integral element L∆ ， J  is 

Jacobian，and non-dimensional distance between 0P  and the integral element L∆  is  

Jed /= . When d is very small ， the 

function 22/ d+ξξ  changes sharply 
near the origin 0. Therefore, its numerical 
integral performed by the Gaussian 
quadrature is not efficient. A non-linear 
transformation is proposed in Ref. [6] to 
solve the problem. The nearly singular 
integral after the non-linear transformation 

mηξ = can be expressed as 
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when a suitable value m is chosen ， the kernel function 
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slower，so that an accurate solution of integral (4) can be evaluated effectively by  the 
Gaussian quadrature . 
 
2.2 Treatment of nearly weakly-singular integrals 

      The nearly week singular integral in equation (1) can also be evaluated by the same 
non-linear transformation mηξ = . 
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Similarly，when a suitable value m is chosen，an accurate solution of the  weakly  
nearly-singular integral (6) can be obtain effectively by  the Gaussian quadrature . 

 
3.  BEM formulation for steady-state thermal analysis of thermal 
barrier coated components 
     For the steady-state thermal analysis of a multi-layer structure in Fig.3，the boundary 
integral equations for the later β can be given from the equation (1)  
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Fig.2  Integral element  
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where， )(iQ and )(iR denote coefficient matrixes 
of the integrated fundamental solutions 

),( 0PPQ and ),( 0PPR  multiplied by the shape 

function, respectively. )(iT  and )(iq  denote 
boundary temperature vector and its outer normal 
derivative vector, with superscript denoting layer 
number.  The boundary of the region jΩ  of j th  
layer  can be split into two part, 

jj LLL ∪= −1 ， 3,2,1=j ， with 1−jL  and 

jL  denote  the inter and outer boundaries of  jΩ . 
By partitioning the temperature vector and the 
derivatives vector on the inter and outer 
boundaries equation（8）can be rewritten as  
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where the subscript denotes the boundary number,  while superscript denotes the layer 
number. 
 

Let boundary temperature vector and the derivatives vector  
               )1(

00 qq = ，  )1(
11 qq = ， )3(

22 qq = ， )3(
33 qq =  

               )1(
00 TT = ，  )1(

11 TT = ， )3(
22 TT = ， )3(

33 TT =                                       (10) 
When the interfaces are perfectly bounded，continuity conditions on the interfaces can 
be given as: the temperatures on the both side of the interface are the same, while the 
thermal flux on the both side of the interface are equal and opposite. 
   )2(

12
)1(

11 qq λλ −= ， )3(
23

)2(
22 qq λλ −= ， )2(

1
)1(

11 TTT == ， )3(
2

)2(
22 TTT ==    （11） 

where iλ  is the thermal conduct coefficient of material in the ith layer. Suppose  the 

temperatures on the surface 0L  （and 3L ，if exists） are know，and its derivatives 
unknown,  without lose of the generality. The temperature and its derivatives on the 
boundary 1L  and 2L  are unknown, but meet the continuity conditions (11).  After 
substitution of the equations （10）and （11）into the equation (9),  rewriting the 
equation by placing  the know and the unknown boundary values and their corresponding 
coefficient matrixes at the right and left hand sides, respectively, boundary element linear 
equation system of the thermal analysis of a three-layer structure can be deduced  

   
Fig. 3  Multi-layer structure 
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If the third kind of boundary condition, )( TTq f −= αλ ,  is given on the outer and inner 

boundaries,  or in general, it can also be expressed as cbTq =+ ，in which α  denotes 
the boundary thermal exchange coefficient，

fT  the around medium temperature，

coefficients λα /=b ， λα /fTc = . Boundary conditions on surfaces 0L  and 3L  in 

matrix form can be expressed as： 0000 TBcq −= ， 3333 TBcq −= ，where  0c  

and 3c  are the vectors of  the  coefficient c on the boundaries 0L  and 3L , respectively, 

0B  and 3B  are the diagonal matrices of  coefficient b on the boundaries.。By use of  
the third kind of boundary condition mentioned above，the linear equation system of the 
boundary element method for thermal analysis of a multi-layer structure can be given as  
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All the unknowns on the boundaries can be solved from equations（12）or（13）. Then 
the temperature at inner point can be obtained from equation（7）, if needed. 
 
4.  Boundary integral equations for thermal stress analysis under 
complex loads and treatment of nearly singular integrals 
    The boundary integral equations of an isotropy elastic body under thermal and 
centrifugal loads can be expressed as ]10[
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in which 0P  and P  are the source and the integral points, respectively. iu  and it  are the 

displacements and the traction on a boundary node P , respectively. T∆  and 
n
Tq
∂
∂

=  

are the temperature change and the temperature derivatives on the outer normal direction 
of the boundary, respectively. ky  is distance vector between integral point P and the 
rotating axis。 In the integral equation（ 14） , the body force integral has been 
transformed to the integral over the boundary. For the plane stress problems, the poison’s 
ratio ν  and thermal extension coefficient α  in (14)-(18) will be replaced by )1/( νν +  
and )21/()1( ννα ++ , respectively.  
 

For stress analysis of a two-dimensional thin body, similar nearly weak singular 
integral and nearly singular integral in Cauchy principle value exist. An effective integral 
scheme should be chosen to deal with this kind of the nearly singular integral problem. 

 
 4.1 Treatment of nearly singular integrals 
      By use of the singularity isolating technology, the nearly singular integral in equation 
(14) can be expressed as [6]： 
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where， )1(4/11 νπ −−=C ， ν212 −=C , the angles and the radius in the local polar 
coordinate system are shown in Figure 1. From equation（20）one can see that no matter 
what shape of the element is, and how close the source point 0P  to the integral 

element L∆ , an exact solution of the integral (20) can be obtained directly.  In the 
equation（19）, '

0P  is the closest point on the integral element to the source point 0P
（see Fig.1）. 
 
    In the natural coordinate system，the origin O of the local coordinate system is placed 
at the point '

0P （see Fig.2）. When the source point P  approaches point '
0P  on the 

integral element, the first integral in the right hand side of equation（19）can be written 
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by the discritization of the shape function )(ξαN , where )]0()([)( αα ξ
ξ

ξ NNTrf ij −=  

is a non-singular function. When the distance e  between the source point 0P  and the 

integral element L∆  gets small，the principal part of the kernel function in the integral 
(21) will be 22/ d+ξξ （see Fig.2），where Jed /=  denotes the non-dimensional 

distance between point 0P  and the integral element L∆ ， J  the Jacobian of 

coordinate transformation. When d  is very small, but not zero, the evaluation of 
function 22/ d+ξξ  by Gaussian quadrature is inefficient, as the integral kernel 

changes sharply near the origin 0. By virtue of non-linear transformation mηξ = ]6[ ,  
equation（21）can be expressed as： 
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The equation (22) can be evaluated effectively by use of Gaussian quadrature, as the 
change rate of the kernel function gets uniform, when a suitable m is used. 
  
4.2 Treatment of nearly weak singular integrals 
      The nearly weak singular integral in the kernel ijU  and iS  in equation (14) can be 

evaluated by Gaussian quadrature, after the same non-linear transformation mηξ = ]6[  
is used. 
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Generally, the above integral has to be integrated over two sub-elements as equation (6). 
The integral over each sub-element has to be transformed to the [0,1] region first to do 
the non-linear transformation. Then it can be evaluated by the Gaussian quadrature.  In 
order to shorten the computing time and simplify the programming, the different non-
linear transformations mηξ =  and mηξ −=  can be used in one integral element at 0≥ξ  
and 0<ξ  regions, respectively, without the subdivision of the integral element. The 
parameter m can generally be chosen larger than one.  The better choice of m is about 3 in 
this paper. The non-linear transformation is not necessary to evaluate the non-singular 
integral kernels ia  of centrifugal load, and iV  of thermal load in equation (14). 

 
5.  BEM linear equation system of thermal elastic analysis of thermal 
barrier coated components under complex loads 
    For thermal elastic analysis of a multi-layer structure under centrifugal and thermal 
loads as in Fig.2, boundary equation integral can be written, from equation (14), as  
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where L  denotes the boundaries of the  layer, superscript β  denotes layer number. The 
last integral in equation (24) is from the boundary integral of the thermal and / or the 
centrifugal loads. For a three-layer structure, the matrix form of the linear equation 
system of the i th layer iΩ  can be obtained from equation (24)，after discritization  

                      )()()()()( iiiii A+= tUuT ， 3,2,1=i                                                   （25） 

where， )(iT  and )(iU  denote the coefficient matrices formed by the integration of the 
fundamental solution functions ),( 0PPTij

 and ),( 0PPU ij
 multiplied by the shape function, 

respectively. A  denotes a load vector due to a temperature change and / or centrifugal 
force. )(iu  and )(it  denote the boundary displacement and traction vectors of every 
region. Superscript i denotes layer number. Suppose the boundary of the j th region jΩ  

be jj LLL ∪= −1 ， 3,2,1=j ， where 1−jL  and jL  denote the inner and outer 

boundaries of the region jΩ , respectively. After dividing the displacement vector and 
traction vector into two parts, the ones on inner boundary and on outer boundary, 
equation (25) can be rewritten as 
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where the subscript denotes the boundary number, the superscript denotes the layer or 
region number. For the sake of convenience, let boundary value vectors be some new 
simple vectors. 
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If the interfaces are perfectly bounded, the continued conditions of the displacements and 
traction on the interfaces can be given as 
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Suppose boundary conditions are well posted on the outer boundary and the inner 
boundary if exist, while displacements and traction on interfaces 1L  and 2L  are 
unknown, but fulfil the continuity condition (28). Suppose the traction is known, but 
displacements, except for the ones to constrain the rigid body movement, are unknown on 
the outer and inner boundaries, without lose of generalization. The matrix form of the 
linear equation system for the boundary element thermal elastic analysis of a three-layer 
coated structure can be given as equation (29),  after rearranging the known and the 
unknown vectors and the corresponding coefficient matrices at the right and the left hand 
side of equation (29), respectively. 
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Let  
0N 、 1N 、 2N 、

3N  and 0M 、 1M 、 2M 、
3M  denote the total numbers of nodes 

and elements on the every boundaries, respectively. The total number of unknown values 
in the boundary element equation system (29) is )2442( 3210 NNNNNF +++= , which is 
the length of the unknown vector in the left-hand side of the equation (29). All the 
unknown displacements and traction on the boundaries can be solved from equation (29). 
Furthermore, the other stress components on the boundaries and the displacements and 
stresses in the region can be obtained from equation (14) and a related formulation, if 
necessary. 
 
6.  Numerical examples 
Thermal analyses of a thermal barrier coated component 
    A two-dimensional section model of a hollow long shaft coated by a bond layer and a 
ceramic layer shown in Fig. 3 was chosen. The outer radius 0r  of the ceramic layer is 

m1.0 ，and the inner radius 3r  of the shaft is m005.0 . The thickness of the two outer 

layers h  varied from 0.01m to m1010− . 8 quadratic boundary elements were used on the 
each boundary of the layers. 32 boundary elements and 64 nodes were used for the whole 
model. Two groups of material parameters were used for the following two numerical 
examples.  
 

Example 1: Same thermal conduct parameter iλ =25 )/( 0 CmW • , i=1,2,3 was used for 

the three-layer model. The thermal exchange coefficients ih  and air temperatures fiT  on 
the inner and outer boundaries are )/(8000 0

0 CmWh •= , )/(6000 0
3 CmWh •= , 

CTf
0

0 2158.1005= , CTf
0

3 9132.360= . The theoretic solution of the temperature 
distribution T along radial direction can be deduced easily, which is the same as one of a 
single-material cylinder of the same size.  CrrrrT 0

303 )/ln(/)/ln(*500500 += . Its 
derivatives along radial direction can be obtained easily from the above temperature 
solution. Non-dimensional temperature )/( 01 TT  and its normal derivatives 

]/*)/[( 001 TrdrdT  at interface 1L （ 1rr = ）versus non-dimensional coating thickness 
)/log( 0 hrn =  were given in Fig.4 . 

 

Example 2: Three thermal conduct coefficients iλ  for the material parameters in the 
three layers are )/(11 kmW •=λ , )/(2532 kmW •== λλ . The boundary conditions for the 
inner and the outer boundaries are the first kind. The temperatures on outer and inner 
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boundaries are CT 0
0 1000= ， CT 0

3 500= , respectively. Non-dimensional temperature 

)/( 01 TT  and its derivatives ]/*)/[( 001 TrdrdT  on interface 1L （ 1rr = ）versus the 
non-dimensional coating thickness )/log( 0 hrn =  were given in Fig.5 .The temperature 

distribution in region 1Ω  can be given as )2/()/ln( 1100 πλrrQTT −=
]11[
，where radial 

thermal flux )/)/ln(/)/ln(/)//(ln()(2 33222111030 λλλπ rrrrrrTTQ ++−= .  
 
Thermal stress analyses of a thermal barrier coated component 

  The same model with same size in Fig.3 was used. The material parameters are 
shown in Table 1. Three types of loads were applied in the following three examples.  
 
Example 3: a uniform traction, p=100MPa, along radial direction were applied on the 
outer boundary of the ceramic layer, while the inner boundary was free.  
Example 4: Temperatures on the outer and the inner boundary were 

0T =1000 0 C, 

3T =500 0 C.  The theoretic solution of temperature was given in Example 2 ]11[ .  But the 
numerical solutions of the temperature and its derivatives were obtained by boundary 
element thermal analysis in this paper.  
Example 5: The shaft was rotating with a speed n=30000 revolutions per minute. The 
same element model in the thermal analysis in Fig.3 was used, in which 8 elements were 
uniformly placed on the each boundary in the Example 3～5. A non-uniform-element 
model was also used in Example 5.  On each circular boundary of the non-uniform model, 
the length of one element was token 1.2 times as long as the corresponding one in the 
uniform model, and the length of the next element to it was 0.8 times as long as the 
corresponding one in the uniform model,  while the other element length was kept as one 
in the uniform model. All the thermal elastic analyses were in plane strain model. The 
shear stress on the interfaces was zero, as all the examples are axial-symmetric. The 
tangent tension stress and normal tension stress on interface 1L  versus the coating 
thickness were given in Fig.6～Fig.8.  
 

Table 1 Material parameters 
 
Zone 

Elastic 
module 
E[MPa] 

Poison’s 
ratio ν  

Thermal 
extension 
coefficient 

iα [ 10 −C ] 

Density ρ  

[ 3/ mkg ] 

Thermal conduct 
coefficient iλ  
[ )/( 0 CmW • ] 

1Ω  4101×  0.25 5101 −×  3104×  1 

2Ω  4107.13 ×  0.27 51051.1 −×  3104×  25 

3Ω  41021×  0.30 5102 −×  31098.7 ×  25 

 
The symbols CBEM、Exact and Present in Fig. 4 ～ Fig. 8 mean the solutions by 

the conventional BEM, the exact solution ]11[  and the present method, respectively.  
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Fig.4 Temperature and its normal derivative  
(same materials in three layers) 

Fig.5 Temperature and its normal derivative 
(different materials in three layers) 
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7. Conclusion and discussion 
 In the numerical studies reported in this paper, 10～16 point Gaussian quadrature 

was used for the thermal analysis, 14～20 point Gaussian quadrature for the stress 
analysis, with the power of the non-linear transformation being 3～5 in order to obtain 
numerical results with enough accuracy.  From the numerical results obtained, some 
conclusions can be made. 
 
1)  For the thermal analyses, The relative error of the normal derivatives of the 
temperature was one order greater than that of the temperature. The relative errors of the 
temperature and its normal derivatives at the interface 1L  obtained by present method 
was less than 1%, when thickness parameter )/log( 0 hr varied from 2 to 9. Generally, the 
relative error was less than 0.2%, when )/log( 0 hr  was greater than 4. The maximum 
error appeared at 3～2)/log( 0 =hr , as the nearly singular integrals tend to the singular 
integral, when )/log( 0 hr  was greater than 4, which can also be evaluated efficiently by 
the present method. But if the conventional BEM was used, the larger the )/log( 0 hr  term, 
the larger the computational error. The maximum relative error obtained in this study was 
very large, greater than 620%.  
 
2)  The power of the non-linear transformation, m, was not limited to integers, but it must 
be real. For thermal analysis, the maximum error of the derivatives was 5%，when m is 
limited to positive integers, while the maximum error was only 1%, when a positive real 
parameter m was used. 
 
3) Because the thermal conductive coefficient of the ceramic was 25 times smaller than 
that of the substrate, the normal derivatives of the temperature at the interface 1L  in 
Example 2 (see Fig.5) was about 25 times greater than that in Example 1 (see Fig.4).  
 
4) For the stress analyses, the maximum relative errors of the tangent tension stresses at 
interface 1L  were 0.08%, 0.13% and 0.23% for the thermal, traction and centrifugal 
loads, respectively, using the present method, in the range of 9)/log(1 0 ≤≤ hr . While the 

maximum relative error of the normal tension stresses at the interface 1L  under traction 

load was 0.14%. As the normal tension stresses at the interface 1L  under the thermal and 
the centrifugal loads are nearly zero at the large portion of the thickness parameter range, 
absolute errors, which were 0.8 and 0.06MPa for those two load cases, were used. Using 
the conventional BEM, good results can only be obtained when the thickness parameter 

)/log( 0 hr  was less than 2 (see Fig.6 and Fig.7). While the maximum relative errors 
become very large, say 480%, 250% and 900% for the tangent stresses under those three 
load cases, respectively, when the thickness parameter )/log( 0 hr  was larger than 2. 
 
5) For the centrifugal stresses,  the maximum relative errors were 2～4.6%, when the 
conventional BEM with uniform element size was used, with the thickness parameter 
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being 4)/log(2 0 ≤≤ hr . The errors were less than 1%, with the thickness parameter 
being other than that range (not given in the figures). Using the conventional BEM with 
non-uniform element size, the maximum relative error was 5.5% and 10.4%, with the 
thickness parameter being 2)/log(4.1 0 ≤≤ hr  and 3)/log(4.2 0 ≤≤ hr , respectively. And 
the maximum relative error became very large, approaching 900%, when the thickness 
parameter was larger than 7. Using the present BEM with non-uniform element size, the 
maximum relative error was only about 1.0%, with the thickness parameter being 

2)/log( 0 ≥hr .  
 
6) The temperatures, displacements and stresses at inner point near the boundary can also 
be calculated by the scheme of evaluating the nearly singular integral given in this paper.  
 
7) The BEM developed in this study for the thermal and interfacial stress analyses of 
thermal barrier coated components are effective, which can be an useful tool for the 
coating design and peeling-off failure analysis of thermal barrier coated components. 
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