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Abstract

The boundary element formulation for analysing cracked thermopiezoelectric materials
due to thermal and electroelastic loads is reviewed in this paper. By way of Green's
functions for piezoelectric solid with defects and variational principle, a boundary
element model (BEM) for a 2-D thermopiezoelectric solid with various defects is
discussed. The method is applicable to multiple crack problems in both finite and
infinite solids. Finally a brief assessment of the boundary element formulation is made
by considering some numerical examples for stress and electric displacement (SED)
intensity factors at a particular crack-tip in a crack system of piezoelectric materials.

1 Introduction

Thermoelectroelastic analysis of multiple cracks inside a piezoelectric solid is of
considerable importance in the field of fracture mechanics, as the piezoelectric materials
often contains many internal microcracks before in use. Analytical analysis of
thermopiezoelectric solid with defects is, however, very difficult due to its complex
geometry and mathematical formulation. Thus efficient numerical techniques such as
boundary element method is required to develop. In 1994, Lee and Jiang [1] derived a
boundary integral equation of piezoelectric media by the method of weighted residuals
and also obtained the fundamental solution for plane piezoelectricity by using the
double Fourier transform technology. Lu and Mahrenholtz [2] presented a variational
boundary integral equation for the same problem. Ding et al. [3] developed a boundary
integral formulation which is efficient for analysing crack problems in piezoelectric
material. Rajapakse [4] discussed three boundary element methods (direct boundary
method, indirect boundary element method and fictitious stress-electric charge method)
in coupled electroelastic problems. Xu and Rajapakse [5] extended the formulations to
the case of piezoelectric solids with various defects (cavities, inclusions, cracks, etc.).
Using Radom transform techniques, Hill and Farris [6] expressed a foundational
solution for three-dimensional piezoelectric materials in a line integral form which can
be evaluated numerically. Khutoryaansky et al. [7] introduced a boundary element
formulation for time-dependent problems of linear piezoelectricity. Recently, Qin [8]
and Qin and Lu [9] proposed a boundary element formulation for fracture analysis of
thermopiezoelectricity based on the dislocation method and the potential variational
principle. Liu and Hui[10] presented a boundary integral equation for analyzing thin
piezoelectric films and coatings. The following developments are based on Qin[8,11],
Qin and Lu[9], and Qin and Mai[12].
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2 Basic formulations for thermopiezoelectricity

Consider a linear piezoelectric solid in which all fields are assumed to depend only on
in-plane coordinates x; and x,. Boldfaced symbols stand for either column vectors or
matrices, depending on whether lower case or upper case is used. The SED vector I1,,

The elastic displacement and electric potential (EDEP) vector u, temperature 7 and heat
flux 4; in the solid subjected to loading can be expressed in terms of complex analytic
functions as follows[11]:

T=g'(z)+g'(z), 9=—ikg'(z))+ikg'(z,), h==9,, hy=9,,
u=AF(z)q +cg(z,) + AF(z)q +¢g(z,),

¢ =BF(z)q +dg(z,) + BF(z)q + dg(z,),

Hl = _(I),Z’ Hz = ¢,1

with

F(z) =diag[ f(z)) f(2,)f(25) (2], z, =x + 1%, 2, =X + p;X, (2)

where overbar denotes the complex conjugate, a prime represents differentiation, q is a
constant vector to be determined by boundary conditions, u={u; u, u; (p}T , I={c; 65
Gy D,—}T, J=1.2; i=~-1, k=4/kk,, —kfz , k;; are the coefficients of heat conduction, u;

and ¢ are the elastic displacement and electric potential, 7, h,c,andD, are

(1

temperature, heat flux, stress and electric displacement, 3 is the heat flow function, t
and p; are the heat and electroelastic eigenvalues of the materials whose imaginary parts
are positive, f(z;) and g(z,) are arbitrary functions with complex arguments z; and z,
respectively, A , B, ¢ and d are well-defined in the literature (see[11], for example).

3 BEM for thermopiezoelectric problem

Consider a two-dimensional thermoelectroelastic solid inside of which there are a
number of cracks. The numerical approach to such a thermoelectroelastic problem will
involve two steps: (1) solve a heat transfer problem first to obtain the steady-state T’
field; (2) calculate the SED caused by the T field, then derive an isothermal solution to
satisfy the corresponding mechanical and electric boundary conditions, and finally,
solve the modified problem for the EDEP and SED fields. The details are as follows.

3.1 BEM for temperature discontinuity problem

Consider a thermal finite region Q; with a number of cracks bounded by I', as shown in
Fig. 1(a). The heat transfer problem to be considered may be stated as

k,T,; =0, inQ,, 3)
h, =hn, =h,, on T}, “4)
T=T,, onI'y, 5
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hn, =0, onlL, (6)

1l

where n; is the normal to the boundary I' (=T, +1}), A, and T, are the prescribed
values of heat flow and temperature, which act on the boundaries I', and I,
respectively. For simplicity, we define T=T | =T | - onL(=L" +L"), where T is the
temperature discontinuity, L is the union of all cracks, L" and L are defined in Fig.
1(b).

Further, if we let ), be the complementary region of Q; (i.e., the union of Q; and
- —T|r =To, I'" and I'" are defined in Fig.
1(b), the problem shown in Fig 1(a) can be extended to the infinite case (see Fig. 1b).

), forms the infinite region ) and T=T

QZ

@ (b)
Fig. 1: Configuration of piezoelectric plate for BEM analysis.

3.1.1 Potential variational principle

In a similar manner to that of Yin and Ehrlacher [13], the total generalized potential
energy for the thermal problem defined above can be given as

P(T,T) = % j K TT A0+ j _h,TdL. (7)

i

By transforming the region integral in eqn (7) into a boundary integral, we have

P(T.7) =1 [ oyt s [ nfas, @®)
2JL ’ r

in which the relation

hy==k,T;, [ hTds=] [(9T), 8T 1ds, 9)

and the temperature discontinuity assumed to be continuous over L and being zero at the

ends of L are used. Moreover, temperature 7 in eqn (8) can be expressed in terms of T
through use of Green’s function presented in [11]. Thus, the potential energy can be
further written as

P(f):—% I S(f)z‘jxdﬁj' h, Tds . (10)
L r
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3.1.2 Boundary element formulation

Analytical results for the minimum potential (10) are not, in general, possible, and
therefore a numerical procedure must be used to solve the problem. As in the
conventional BEM, the boundaries I' and L are divided into M and M, linear
boundary elements, for which the temperature discontinuity may be approximated by
the sum of elemental temperature discontinuities:

T(s)= Y T,F,(s) (1)

where f"m is the temperature discontinuity at node m, M=M .+ M, +N, and N is the

number of cracks. It should be mentioned that appearance of N is due to the number of
nodes being one more than the number of element in each crack.

With the use of Green’s functions presented in [11] and eqn (11), the temperature
and heat-flow function at point z, (or C,(z;) which is defined in the Appendix A) can be
given as

(&)=Y mla, E)IT, (12)
9(¢,) =~k Rela, (517, (13)

m=1

where a,,(C,) has different form for different problem(see Appendix A for details).

In particular the temperature at node j can be written as

T,Lf(d)] =Y Imia,[f(d)}T, . (14)

m=1
. . .
where d; = x,; + p;X,,, (X,,,X,;) are the coordinates at node ;.

For the total potential energy (10), through the substitution of eqns (11) and (13)
into it, one obtains

P(T)~ f“{f(—%mr@j + Gj.T‘j} (15)

where K, is the so-called stiffness matrix and G; the equivalent nodal heat flow vector,
with the form

Ky =] Rl G s+ ] Relan €l (16

j-1

G, = j L B (17)

where h., =h, when s eI, ,and &, =0 for other cases.
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The minimization of P(f’) yields

M A
> k,T,=G,. (18)
j=1

The final form of linear equation to be solved is obtained by selecting the appropriate
equation from eqns (14) and (18). Equation (14) will be chosen for those nodes at which
the temperature is prescribed, and eqn (18) will be chosen for the remaining nodes.
After the nodal temperature discontinuities have been calculated, the displacement and
stress at any point in the region can be evaluated through use of eqn (1). They are

M
U=)>uT, II = xjf/,H2:Zyj7A“. (19)

where u;, X; and y; have different forms for different problems (see Appendix B for
details).

3.2 BEM for displacement and potential discontinuity problems

Consider again the domain Qj, in which the governing equation and its boundary
conditions are described as follows:

m,, -0, o, 20)
L, = Hiin.' = tio _(tg)i > onl’, 2D
u, = uio - (U(;)i > onI, (22)
Li| pr = 7l - = _(ts)i’ b =u, I _“i‘L— _(U(;)f It +(U?‘)i - onL (23)

where I; and T, are the boundaries on which the prescribed values of stress £ and

displacement u, are imposed. Similarly, the related potential energy for the elastic
problem can be given as

P(b) = %L [p(b)-b , +2¢) -blds - [ (°~t})-bds (24)

where the electroelastic solutions of functions ¢(b) and U(b) appearing later have been

defined in Chapter 4 of Ref.[11] and are also presented in Appendix C for the sake of
reference.

It should be mentioned that we use the impermeable electric boundary condition on
crack faces because of its much simpler mathematical treatment and the fact that the
dielectric constants of a piezoelectric material are much larger than that of the
environment (generally between 1000 and 3500 times larger).

As treated before, the boundaries L and I' are divided into a series of boundary
elements, for which the EDEP discontinuity may be approximated through linear
interpolation as
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b(s)= D b, F,(s). (25)

m=1

With the approximation (25), the EDEP and SED functions can be expressed in the
form

U(©) =Y Im[AD, (5)b,. (&)=Y Im[BD, ()b, (26)

m=1 m=1

where D,, has different forms for different problems. The function D,, is given in
Appendix D for four typical problems.
In particular the displacement at node j is given by

Ul £ (d,))] =flm{ADm[<f(da,>>]}b,,,. @7

Substituting eqns (25) and (26) into eqn (24), we have

P(b) = i|:biT {ikyb/}/Z - gx} (28)

where
1 - 1 )
;= L Im[D] (§;")B"1ds - L Im[D/ (¢} )B 1ds (29)
j-1 J-1 j J

and G, =—t, when node j is located at the boundary L, G, =t —t, for the other

nodes. The minimization of eqn (28) leads to a set of linear equations:

M

D kb, =g, (€29)
j=1

Similarly, the final form of the linear equations to be solved is obtained by selecting the
appropriate equation, from eqns (27) and (31). Equation (27) will be chosen for those
nodes at which the EDEP is prescribed, and eqn (31) will be chosen for the remaining
nodes. Once the EDEP discontinuity b has been found, the SED at any point can be
expressed as

I, = - Im[BPD),(§)b,,, TI, =) Im[BD,, )b, (32)

m=1 m=1
Therefore, the surface traction-charge vector Il, in a coordinate system local to a
particular crack line, say the ith crack, can be expressed in the form

I, = Q(a,){-TI,sina, +II, cosa,}” (33)
n i 1 i 2 i

where Q(a;) has been defined in eqn (3.174) of Ref[11].

Using eqn (33) we can evaluate the SED intensity factors by the following
definition
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K(c)={K, K, K, K,} = lin(}\/ZTcrl'In(r) . 34)

4 Application of BEM to determine SED intensity factors

In practical computations, one may evaluate the SED intensity factors in several ways
such as extrapolation formulae, traction formulae, J-integral formulae [14], least-square
method [15,16], and others [14]. In our analysis, the method of least-square is used,
since only the EDEP field obtained from the BEM is required in the procedure. It
therefore does not require much computer time for the K-factors calculation. Moreover,
it is very easy to implement the method into our BEM computer program. That is why
we select the least-square method, rather than another, to calculate SED intensity factors.

4.1 Relation between SED function and SED intensity factors

In order to take into account the crack-tip singularity of the SED field we choose the
mapping function [17]

Zr T Zko :W(‘gk):‘gin (k:1927 3949 t) (35)

where z is the coordinate of the crack tip under consideration. Recall that the general
expressions for the EDEP field and SED function of a linear thermopiezoelectric solid
are [6, 7]

U = 2Re[Af(2) +cg(z,)],
@ = 2Re[Bf(z) + dg(z,)].

(36)

The EDEP and SED fields in &-plane can then be written as
U =2 Re[Af(E) + cg(E,)],
1, = 2Re[Bf'() /& +dg'(5,) /&, .

With the usual definition, the vector of SED intensity factor, K, is evaluated by

(37)

K= gn& Ev2nll, =2+/27 lgur& Re[Bf'(§)+dg'(E,)]. (38)
The functions f and g near the crack tip can be assumed as simple polynomials of §
2n 2n
f(&)~ D (s, +is,, )&, &)=Y rEl (39)
= J=

where 7;(j=1, 2, 3,...,2n) are known complex constants, and s; are real constant vectors
to be determined.

On the crack surface which is traction-charge free, i.e., =0, the substitution of eqn
(39) into eqn (36), yields
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q)=2ReZn:[B(sj+is2n+j)§j +dr,g/]1=0. (40)

J=1

Noting that &=&/ =(- x)/* along the crack surface, where x is the distance from crack
tip to the point concerned, we have

$,,.; = By [-B,s, +Im{dr,}], forj=1,3,5,..., 2n-1, 41)
S$rpj = B;l[Bst +Reldr;}], forj=2,4,6,..., 2n, (42)

in which Bz=Re(B), B~Im(B).
Substituting eqns (41) and (42) into eqn (39), and then into eqns (37) and (38),
yields

U=Y1Q,(&)s,+8,(£.8)

43
K= 2@ Re[B(I1-iB;'B,)s, + BB, Im(dr,) + dr, ], +
where

Q;(&) =[1-iBxB,1&’, S;(E.&) =iBrIm[dr,J&' +drEl, (j=1,3,...,2n-1), (44)
Q;(&) =[1+iB;'Bx1&’, S;(E.&) =iB;'Re[dr, &' +dr&l, (j=2,4,...,2n). (45)

4.2 Simulating K by BEM and least-square method
The least-square method may be developed by considering the residual vector for EDEP
field at point k (k=1, 2,..., m)
2n
R, =Y [Q,(&)s; +S, (&, .E)]-U,, (k=1,2,...,m) (46)
Jj=1

where Uy is the EDEP vector at point k obtained from the BEM given in the previous
section.
The minimum for the sum of the squares of the residual vector

n={s}" [Q]'[Ql{s} - 2{s}" [Q]" ({U} — {S}) + terms without {s} (47)
provides

[QI"[Ql{s} =[Q]" ({U} ~{S}), (48)
where

{8} =15,85,...,8,,})7, {U}={U,,U,,...,U,}, (49)
1S} =181.85,..8, 1T, S; =) 'S, (E,.&,), (50)
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Qll Q21 T Q2n,1

Q, Qp .. an,z
[Q]= ; (1)

le Q2m T Q2n,m

Q, =Q,(&). (52)

Once the unknown vector {s} has been obtained from eqn (48), the SED intensity
factors K can be evaluated from eqn (43),. In the calculation, an appropriate number m
can be set to obtain the required accuracy.

5 Numerical results

As an illustration, the proposed boundary element model is applied to the following two
numerical examples in which an inclusion and a crack are involved. In all the
calculations, the materials for the matrix and the elliptic inclusion are assumed to be
BaTiO; and Cadmium Selenide, respectively. The material constants for the two
materials are as follows:

(1) Material constants for BaTiO3

¢, =150GPa, ¢, =66 GPa, ¢, = 66GPa, c;; =146 GPa, c,, = 44 GPa,
o, =8.53x10°K™, oy, =1.99x10°K™, & ,=0.133x10° N/CK,

e, =—4.35C/m?, e;; =17.5C/m’, e, =11.4C/m?, x,, =1115k,,

K53 =1260%,, %, =8.85x10™% C*/Nm’ = Permittivity of free space

(2) Material constants for Cadmium Selenide

¢, =74.1GPa, ¢, =45.2GPa, ¢, =39.3GPa, c,, = 83.6GPa,
¢, =13.2GPa, y,, =0.621x10° NK'm™,  vy,, =0.551x10° NK 'm~,
2, =-0294x10°CK'm™>, e, =-0.160Cm™>, e, =0.347Cm,

e =0.138Cm™7, x,, =82.6x107"7 C*°N'm~, k,; =90.3x107> C*N'm .

where ¢;; is elastic stiffness, o, and o3 are thermal expansion constants, A; and g3 are
pyroelectric constants, e;; is piezoelectric constants, y; is piezothermal constant.

Since the values of the coefficient of heat conduction for BaTiO; and Cadmium
Selenide could not be found in the literature, the values ks3/k;;=1.5 for BaTiO; and
ks3/k11=1.8 for Cadmium Selenide, k,5=0 and k;;=1 W/mK are assumed.

In our analysis, plane strain deformation is assumed and the crack line is assumed
to be in the x;-x, plane, i.e., D;=u3;=0. Therefore the stress intensity factor vector K now
has only three components (K;, Kj;, Kp).

In the least-square method, the SED intensity factors are affected by the parameters
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n, dye and d,;,, where n is the number of terms in eqn (46), d,.. is the maximum
distance from crack tip to the n-point at which the residual vectors are calculated, and
dpin 1s the minimum distance. In our analysis d,,;, is set to be 0.05¢.

Fig. 2: Geometry of the crack-inclusion system.

Example I: Consider a crack of length 2b and an inclusion embedded in an infinite plate
as shown in Fig. 2. The uniform heat flow 4, is applied on the crack face only. In our
analysis, the crack was modelled by 40 linear elements. Table 1 shows that the
numerical results for the coefficients of stress intensity factors J3; at point 4 (see Fig. 2)

vary with d,,,. when the crack angle o =0° and n=5, 10, 15, respectively, where [3; are
defined by

K, = h,geNmeys /&,
Ky = h,eNmey, B,y /k (53)

Ky = heNmey By /k .

Table 1 The BEM results for coefficients 3; vs d,,,, in Example 1

dyad/C n B, B, Bb

0.5 5 1.230 0328  0.755
10 1.224 0.323 0.747
15 1.222 0.322 0.745

1.0 5 1.225 0.321 0.749
10 1.221 0318 0.745
15 1.220 0318  0.743

1.5 5 1.231 0328  0.757
10 1.227 0324  0.752
15 1.226 0323  0.750

SIEM 1.207 0311 0.732
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02 L L L L I}
0 20 40 60 80 100

Fig. 3: The coefficients B, versus crack angle o.

For comparison, the singular integral equation method (SIEM) given in [6,7] was used
to obtain corresponding results. It can be seen from Table 1 that the results obtained
using d,,—c are often closer to those obtained by SIEM than by using d,,,=0.5¢ or
dni=1.5¢. This is because more data can be included into the least-square method for a
large d,,..., but too large d,,,, may not represent the crack-tip properties and cause errors.

Figure 3 shows the results of coefficients 3; as a function of crack angle o when
dn=c and n=15. It is evident from the figure that all the coefficients B; are not very
sensitive to the crack angle, but vary slightly with it. It is also evident that the two
numerical models (BEM and SIEM) provide almost the same results.

Example 2: Consider a rectangular thermopiezoelectric plate containing a crack and an
inclusion as shown in Fig. 4. In the calculation, each side of the outer boundary is
modelled by 50 linear elements and the crack is divided into 40 linear elements, d,,,,=b
and n=15 are used. In Fig. 5 the coefficients of SED intensity factors [B; at point A (see
Fig. 4) are presented as a function of crack orientation angle a. However, numerical
results for such a problem are not yet available in the literature. For comparison, the
well-known finite element method [18] is used to obtain corresponding results. In the
calculation, an eight-node quadrilateral element model has been used. In addition, the
three nodes along one of the sides of each of the quadrilateral elements are collapsed at
the crack tip and the two adjoining mid-points are moved to the quarter distances [19],
in order to produce 1/ type of singularity. It can be seen from Fig. 5 that the values of
[3; are more sensitive to crack orientation than those in Example 1. They reach their peak

values at a. =37 for By, a=42" for B,
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3.5a

Fig. 4: Configuration of the crack-inclusion system in Example 2 (a=2b).

Present method

''''''''''''''''''''''''''' Finite element method

O | | | | |
0 20 40 60 80 100

o(deg.)

Fig. 5: SED intensity factors versus crack angle o.
and o =50" for By, respectively. It is also evident from Fig. 5 that the maximum

discrepancy between the numerical results obtained from the two models is less than
5%.
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5 Conclusion

Applications of boundary method to thermopiezoelectric materials with defects are
discussed in this paper. A unified formulation for cracked half-plane, bimaterial, hole
and inclusion problems of piezoelectricity has been presented. The study indicates that
the formulation is applicable to multiple crack problems in both finite and infinite solids.
Numerical results obtained from the present boundary element formulation and finite
element approach are compared and they are in good agreement, but the former with
less degree of freedom.
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Appendix A: Expressions for a,(z,)(or a,(C,))

The function a,,(z,) has different form for different problem. For example,

a(z,) :21_71.‘-1

m

{In(z, — 2™+ b, In(z, - 21" }M ds
-1

m-1

1 m iy L, =S
+=— [ {in(z, =zl + b In(z, —Z})} ds (A1)
21l lm
for bimaterial problems,
_ 1 m-1 -1 Fm-l N * - —-J lm—l +s
am((;t) _EJ.’ ln(Cz S0 )+1n((;t _Cro )+Z(FJ'C/ _Cj)z;z / ds
m-1 j=1 m-1

(A2)

m

1 m 1 Fm kd . o lm s
+ EJ.IM {ln(ct - tO) + ln(ct - C,O) + /Z::‘(chj — cj )Ct }l_ds

for a plate containing an elliptic inclusion and multiple cracks outside the inclusion, in
which

C :f(z)=Zf+VZt2_a2_pr2b2 m—1
t t

3 o G =S o= Sz, (A3)
a—ipb

and

1 . sy Ly T8
an(z) =5 | , {In(z, =2 +In(z, — 2} 2= ds

m-1

I -
lm
for the half-plane problem with multiple cracks, and

+ij {In(z, - z3) +1In(z, - Z3)} 2 ds (A4)
21 i

a,&)=5- ],

m—1

. O Ty by S
{In(C, - ) +1In(C;" - G5 }ll—ds

m-1
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3], I9C T+ InG Ty s (A3)

for a plate containing multiple cracks and a hole of various shapes, where C, and () are
defined in [12,20].
In the formulations above zj; is defined as

m—1

2 =d, +s(cosa, , +p sina, ), zn =d, +s(cosa, + p, sina,,) (A6)

* . .
and dm = Xim + p1X2m, (X,,X2m) represent the coordinates at node m, o, is the

angle between the element in the left of node m and the x; -axis, with o, defined
similarly. It should be pointed out that the superscript “"”* for variables ¢, and z, has
been omitted in eqns (A1) and (A2) in order to simplify the writing.

Appendix B: Formulations of u ,x; andy,

The expression of u ,x; andy; are presented for following four cases:

J? J
(1) a plate containing an elliptic inclusion and multiple cracks outside the inclusion

) 5 [
u, =~ Tm [ZAUM(@Q))qk + LA G+ “g(cr)} Hd

1
27 J-1 j-1

+—Imjl/ {iA( D) +ZAfk (€) +eg(C,) } s, (B1)

ac>

-8
ds, (B2)

Xj:__Im |: A< ofar (Co) >qk+ZAPf,:

v 0, [ +s 1
+ R T A I P | A
C‘Cg (Ct) aZt :| lj_l S 27'C m{'[]j |:Z <pcx ok

k=1

+ZAPf +e1g (g,)i}l

k=4 Z

lj
1 %, *
v, =5-Im], [ZA@(C ) >q DAL

k=1

Gy

k=1

reg'(€) 2 } sy i) {ZA@(@

t

+2Af +eg'(g, agt}lfds (B3)

where
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=y <ﬂ;a’1 Zi>e , (B4)
=2 <— Je! ‘Z,i>t : (BS)

(i1) bimaterial problems

u; :%Imj.lﬂ {A<f(y1m)>q +e[ /(M) +bf AN L— i

]71

*(1 1 1 l/ —
eI (A{FO)a,+ el /1) b O s (B6)

J

1 1ok N ! Z; i
X, == tm[ B{p G+ dp L) + B O ——ds
J= s

N
ds, (B7)

*(1 * r 1 ’ 1 lj -
—ﬁImI,j B{p S 01")ay +dpi LS ) + B O ;
v =otmf B0 a, a0 O s
’on L ! ! ! ! 2 Ji

J-1

S
ds. (BS)

1 1o ’ ’ l;, -
+——Im[ (B(f'())a, +dL ") + b G}
21 lj lj
(ii1) half-plane problem with multiple cracks
4 [ +s
.:—Imj A{f(z))(-B'd) +¢fi(2,)] jz ds

Jj-1

L m j [A(£.(z))(-B'd) +¢f.(z,)] g —% s (B9)
2 o VR T
1 . o * oy l/’—l +s
x,=-Im| - [B{p.fz))B"d)~dp; [(z)]-—ds
+lef [B(p,//(z,))(B"'d) - dp, f!(z )]lj —2ds (B10)
2TC ]j aJ *\“o 1J*\ = lj s
4 , I +s
v, == tm{  [B{f))B 0 -dr( )]
o | l.—s
——Imj B(/(z,))(B d) - df2(z )] —ds, (B11)
where
fi(z,) =(z, —z)lIn(z, —z,0)) = 1] = (z, = Z,))[In(z, = Z,,) — 1]. (B12)

(iv) a plate containing multiple cracks and a hole of various shapes
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1 . [ +s
u,=--—Im j A (@) + £, (@P DB d - cg(z)] ds
e j-1 =
1 I lj -5
——Im j [A(f,(z) +1,(z)P"T)B'd - cg(z,)] ds, (B13)
27[: lj l_/'
1 / 1= 1T * 1/71 +s
x;=—Im[ [B(f/(2)P+1;(z)p))B'd - cpg'(,)] ds
2n lj21 I
1 ’ ’ —* -13 * l/ -5
o -Im[ [BE@P+2)p))B 'd - epig'(s)]-—ds, (B14)
/ J
1 ' ' -13 ' l/‘*l +s8
y,=—-—Im| [B(f/(2)+f}(2))B d—cg'(z,)]-=—ds
21 L lj71
1 ' ' -3 2 l ; — S
———Im| [B(f{(2)+£;(z)Bd-cg'(z,)]--—ds. (B15)
27 1 l.

J

Thus, the SED and EDEP on a boundary induced by temperature discontinuity are
of the form

M M
6()=Tn =Y (xm+ym)l,  Ujs)=Y uf,. (B16)
Jj=1 Jj=1

In general, t°(s)# 0 over T, (the boundary on which SED is prescribed) and UY(s) # 0
over I, (the boundary on which EDEP is prescribed). To balance the SED and EDEP

on the corresponding boundaries, we must superpose a solution of the corresponding
isothermal problem with a SED vector (or a EDEP vector) equal and opposite to those
of eqn (B16). The details are given in the sub-section 3.2.

Appendix C: Expressions of ¢(b) and U(b)

(1) a plate containing a hole and a dislocation b outside the inclusion

U(b) = %Im[A(ln(Ca ~Coo)B b+ % > Im[A<1n(é;a - EBO>B"§IB§T b (C1)
p=l

o(b) = %Im[B(ln(Ca ~Coo)B b+ %Z Im[B<1n(é;a - EBO>B"§IB§T b (C2)
p=l

where diag[Sm, 52[3, 63[3, 84[5].
(ii) half-plane problems

U(b) = %Im[A(ln(za ~Z,0)B’ [A<ln(za - ZBO>B’1§Iﬁ§T]b (C3)

4
b+t > Im
T B=1
4 JE— —
o(b) = lIm[B(ln(za ~Z40)B b+ 1 > Im[B<ln(za - ZB0>B’1BIﬁBT]b (C4)
T T Bl
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(iii) biomaterial problems
For a bimaterial plate subjected to a line dislocation b located in the upper half-plane at
zo(X10, X20), the solution is given by[11]

U0 =Lim AY(In(z0 = 210))B" 1 + Z—Im{A<‘><1n(z<” Z0)ag’} (C5)
T
1 _
o :;Im{B“)<ln(zg) z00))B b+ Z 1m{B<1><1n(z<“ Z0)ap't (C6)
p=1 T

for material 1 in x,>0 and

4
U = lem{A(2)<ln(z(2) 2 )>q<2>} (C7)
n
=1
i
=S LB (1nz - )Y} (8)
por T
where
(Ifal) =B [I = 2MV £ M@y 1L ]E(I)IBETb ) (C9)
qéz) = 2B (M + M(Z”‘)"L‘”’IB(”IBBTb, (C10)

with MY = —BYAY™ is the surface impedance matrix.

(iv) inclusion problems
For the case of a plate containing an elliptic inclusion and a dislocation outside the
inclusion the expressions of ¢(b) and U(b) is too complex and we omit those details

for conciseness, which can be found in [9,11].

Appendix D: Expressions of D, ({)

(1) a plate containing an elliptic inclusion and multiple cracks outside the inclusion

D, (L) = % [, {(111(@ ~Ci"))B" + g@;k ok

+i<ln(ca ~G5i))BBI BT}ZI—Sds

= m—1
+% I {(m(ca - C))B 4 3 (G B

k=1
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+ i(ln(z;;l —Zg"o)>131§1,3§f}lids (D1)
pB=1 m

in which £, can be expressed in terms of s by the relations

o é_ 7 ébz -1 m—1 m m
Co = flza) =22 NZ TG ZPGT el oty = £(2),

a—ip,b

m-1

zio =d,, +s(cosa, , + p,sina, ), zby =d,, +s(cosa, + p, sina,,) (D2)

and d_,, =X, + PuXa -

(ii) half-plane problem with multiple cracks

b1, (i S sl o

m-1

o {(ln(z;"a()))BT + §<ln(z;"ﬁo>>B1§1ﬁ§T} s (D3)

m
m m m =m
where z,, =z, —zg, and zgy, =z, — Zy.

(iii) bimaterial problems

D, (z)= % | . {(m(z;"ag )BT+ Bz;(ln(zgﬁg))B*Elﬁﬁf}%ds
+ % L {<ln(z<':ao )>BT + §<ln(zé‘nﬁ° )>B*§IB§T } l’”l; 5 ds. (D4)

(iv) a plate containing multiple cracks and a hole of various shapes (see Section 4.11 of
Rref.[11])

D@ -] {<h’(¢a ~Cn B X (e -G )>B‘§IB§T}_ZM S s
>

m—1

(D5)

. {On(c“ LB Y (e T >>B'1§1ﬁﬁf} s

p=1

m
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