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Abstract 
 
Based on the Rizzo’s direct boundary integral equation formulation for elasticity 
problems, elastic bodies with randomly distributed circular inclusions are simulated 
using the boundary element method. The given numerical examples show that the 
boundary element method is more accurate and more efficient than the finite element 
method for such type of problems. The presented approach can be successfully applied 
to estimate the equivalent elastic properties of many composite materials. 
 
Introduction 
 
As composite materials are applied more and more to many important engineering 
projects, researchers have paid much more attention to the simulation of the composite 
materials and to the estimation of their equivalent elastic properties.  

To estimate the equivalent elastic properties of composite materials, many theoretical 
models have been developed, such as the composite cylinder model [1], the dilute or 
non-interacting solution [2], the self-consistent method [3], the generalized self-consistent 
method [4~7] and the Mori-Tanaka method [8~11]. At the same time, only few data obtained 
from numerical simulations can be found in literature. A numerical procedure, based on 
the series expansion of complex potentials, was proposed in Ref. [12], but only several 
kinds of periodic arrays of holes were considered. A spring force model has been used 
to simulate a sheet containing circular holes arranged as triangular and hexagonal 
arrays[13]. A numerical equivalent inclusion method was presented [14], which can be 
applied to analyze stress fields in and around inclusions of various shapes by the finite 
element method. But this approach can only be applied to simulate the elastic body with 
only one inclusion. The simulation of the sheet with randomly or normally distributed 
circular holes was investigated in our group several years ago [15]. 

Based on Rizzo’s direct BEM [16] for elasticity problem, a new BEM approach for the 
simulation of elastic bodies with randomly distributed circular inclusions is proposed in 
this paper. Several numerical examples are presented to menstruate the advantages of 
this new BEM approach over the domain-based FEM approach. 
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BEM for simulation of 2D elastic body with a circular inclusion 
 
The model of 2D elastic body with a circular inclusion is shown in Figure 1, where ΙΩ , 

ΙΙΩ  denote the domain of matrix and inclusion respectively, iΓ  the matrix-inclusion 

interface boundary, and I I,   t uΓ Γ  indicate the given traction part and given 

displacement part of the outer boundary of matrix material domain ΙΓ . 

 

Fig. 1. Model of 2D elastic body with a circular inclusion 

The boundary integral equations can be written for the matrix and inclusion subdomain 
respectively: 
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Where superscripts Ι  and ΙΙ  indicate matrix and inclusion subdomain respectively,  
p and q stand for the source point of fundamental  solution and field point on the 
boundary respectively, ( )C pαβ  is a free term determined from the shape of the 

boundary at source point p, ( ),U p qαβ , ( ),T p qαβ
Ι  and ( ),T p qαβ

ΙΙ  are fundamental 

solutions of 2D elasticity problem, and ,  u tβ β  are boundary displacement and 

boundary traction respectively. 

After discretization using linear or quadric boundary elements, equations (1) can be 
rewritten into matrix form as follows: 

I I I I I I I I
11 12 13 11 12 13
I I I I I I I I
21 22 23 21 22 23
I I I I I I I
31 32 33 31 32 33
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II II IIi i=G T H U  (2b) 
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where ΙU  and ΙT  represent the unknown nodal displacement vector and the given 
nodal traction vector respectively on the given traction boundary I

tΓ , ΙT  and ΙU , the 

unknown nodal traction vector and the given nodal displacement vector on the given 
displacement boundary I

uΓ , iU , the unknown nodal displacement vector on the 

matrix-inclusion interface boundary iΓ . While iΙT  and iΙΙT  stand for the unknown 
nodal traction vector on the matrix-inclusion interface boundary for the matrix and 
inclusion material respectively. 

For the matrix material, the subdomain is a multiply connected domain, the nodal 
number and the corresponding sequence of boundary variables can be arranged 
sequentially in the positive direction of the boundary. When advancing in the positive 
direction of boundary, the inner domain surrounded by the boundary is always at the left 
side. For the inclusion, the nodal number of the matrix-inclusion interface should keep 
in line with that of matrix material subdomain. So the nodal number and the 
corresponding sequence of boundary variables should be arranged sequentially in the 
negative direction of the boundary for the inclusion itself. 

In equations (2), the displacement continuity on the matrix-inclusion interface has been 
taken into account. The interface condition for the tractions can be written as: 

II Ii i= −T T  (3) 

Substituting equation (3) into the equation (2b), we can obtain the relation between the 
tractions and displacements of the matrix on the interface: 

( ) 1I II IIi i−
= −T G H U  (4) 

Substituting equation (4) into equation (2a), we can obtain the final system of equations 
for the 2D elastic body with a circular inclusion as follows: 
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BEM for simulation of 2D elastic body with randomly distributed 
circular inclusions 
 
The model of 2D elastic body with randomly distributed identical circular inclusions is 
shown in Figure 2. Where 0Ω  is the subdomain of matrix material, 1 2, , , ,iΩ Ω ΩL  

, nΩL , the subdomains of inclusion material, iΓ  the matrix-inclusion interface 

boundaries, and 0Γ  the outer boundary of the matrix material subdomain.  

 

Z. Yao et al. / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 270-282 (2003)

272



 

Fig. 2. Model of 2D elastic body with randomly distributed identical circular inclusions 

If the conventional subdomain boundary element method is adopted, 1n +  equation 
systems for the 1n +  subdomains should be solved. As the number of inclusions 
increases, the computing time will increase significantly. If we notice that the relations 
between the tractions and displacements of each identical inclusion are just the same 
and similar as shown in equation (4), we can reduce the full computation to the solution 
of the equation for the matrix material domain with inner boundary conditions similar to 
equation (4), which can be described as follows: 
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The first and the second subscript indicate the boundary where the source point node 
p  and the field point node q  located, and 1, 2, 3 denote the traction given part, 

displacement given part of outer boundary and the inner boundaries respectively. To 
distinguish different inner boundaries, the superscripts are used. The first and the second 
(if there is a second one) superscript indicate the number of inner boundary where the 
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source point node p  and the field point node q  located. Matrices G  and H  in 
equation (7) are coefficient matrixes for the inclusion material subdomains. As all the 
randomly distributed circular inclusions are identical, it needs to form the coefficient 
matrixes G  and H  for a certain inclusion only one time. In equation (6), U , T  

and iU  indicate the unknown displacement vector on the traction given part of outer 
boundary, the unknown traction vector on the displacement given part of outer boundary 
and the unknown displacement vector on the i-th inner interface boundaries respectively. 
On the other hand, T  and U  stand for the given traction vector and the given 
displacement vector on the outer boundary respectively. 

For the case of 2D elastic body with randomly distributed circular inclusions of 
different size, the above-presented approach can be generalized no difficulty, provided 
the number of different size is much less than the number of inclusions. In such case, 
the equation (7) should be modified as follows: 
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where 1,  2, , k m= L  denote different inclusion size, ( )k i  can be also a random 

function, and for the inclusion of each size the matrices G  and H  should be 
computed once. 
 
Numerical examples 
 
1) A square sheet with a circular inclusion at the center subjected to uniform tension on 

two opposite edges 

 

 

Fig. 3. Model of a square sheet with a circular inclusion at the center 
subjected to uniform tension on two opposite edges 
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Figure 3 shows the computational model. The side length 100 mma = , the radius of 
the circular inclusion 2 mmr = , the traction 10 MPaq = , the material properties of 

the matrix 1 10 MPaE = , 1 0.3v = , and that of the inclusion 2 1E kE=  and 2 0.3v = . 
The rigid body displacement is constrained properly. In the computation, the 
matrix-inclusion interface is divided into 10 quadratic elements. 

Figure 4 shows the absolute value of circumferential stress θσ  on the matrix- 

inclusion interface obtained by BEM in comparison with the analytical solution, for the 
special case of circular hole. The solid line is the analytical solution, and the solid dots 
show the BEM results. As to the case of an infinite sheet with a circular hole at the 
center, the analytical solution can be written as: 

1 2cos 2qθσ θ= −  (9) 

It is obvious that the maximum of the circumferential stress θσ  is 3 30MPaq =  

when θ  is equal to 2π  or 3 2π , and the minimum is zero when θ  is equal to 

6π , 5 6π , 7 6π  or 11 6π . It can be found that the present numerical results agree 
with the analytical solution very well. The maximum error of BEM results is less than 
0.02%. 
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Fig. 4. Comparison of the circumferential stress θσ  on the matrix- inclusion 

interface obtained by the BEM and the analytical solution 
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Fig. 5. Relation between stress concentration factor and the inclusion-matrix 

modulus ratio obtained from BEM scheme 

 
Figure 5 shows that the stress concentration factor obtained by BEM varies with the 
inclusion-matrix modulus ratio, the solid dots show the numerical results, and the solid 
line is interpolated curve. It can be found from Figure 5 that the stress concentration 
factor decreases quickly with the increase of inclusion-matrix modulus ratio when 
inclusion material is softer than matrix material. Furthermore, stress concentration 
factor increases slowly with the increase of the inclusion-matrix modulus ratio when 
inclusion material is harder than matrix material. As to the analytical solution of an 
infinite sheet with a circular hole or a circular rigid core at the center, the stress 
concentration factor is equal to 3.0 or 1.51 from elastic theory respectively. The 
corresponding results obtained by BEM are 3.0005 and 1.51002 respectively. It is 
obvious that the present numerical results agree with the elastic theory very well. 
 
2) A square sheet with two very close inclusions subjected to uniform displacement on 

one edge 
Figure 6 shows the computational model. The side length 100 mma = , the radius of 
two very close circular inclusions 5 mmR = , the minimum distance between the 
matrix-inclusion interface boundaries 0.5 mmb = , the given uniform displacement on 
the right edge 1.0 mmd = , the material property of the matrix 1 10 MPaE = , 1 0.3v = , 

and that of the inclusion 2 1E kE= , 2 0.3v = . 

It is obvious that the stress concentration factor increases to the maximum when the 
inclusion-matrix modulus ratio approaches zero. So the stress gradient around the 
matrix-inclusion interface will reach the maximum for the case of two circular holes. To 
ensure high accuracy, it is necessary to take finer mesh around the two inclusions for 
either the BEM or FEM computation. 

Figure 7 shows the variation of Von-Mises stress on one quarter of the matrix-inclusion 
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interface by using 10 quadratic boundary elements and 20 quadratic boundary elements. 
It can be found that the variation is very small, which indicates a convergent solution 
has been obtained by using only 10 quadratic boundary elements in BEM computation. 
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Fig. 6. The model of a square sheet with two very close inclusions 
under given uniform displacement on one edge 
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Fig. 7. Comparison of the Von-Mises stress on the quarter of the matrix-inclusion 
boundaries by different boundary element number 
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Fig. 8. Comparison of Von-Mises stress on the quarter of the matrix-inclusion interface 
boundary obtained from BEM and the famous MSC.Marc software 

 
Figure 8 shows the comparison of Von-Mises stress on one quarter of matrix-inclusion 
interface obtained by the presented BEM and the FEM using MSC/Marc software, for 
the case of two circular holes. It can be found that the Von-Mises stress increases slowly 
to the results obtained by BEM with the immense increase of finite elements. It is 
obvious that the accuracy reached by MSC/Marc using 46356 quadratic elements is far 
lower than by BEM using 10 quadratic boundary elements on the interface. The 
presented BEM is much more effective than FEM for such kind of problems. 
Furthermore, for 2D elastic body with randomly distributed circular inclusions, there 
will be plenty of very close inclusions. Thus, the presented scheme of BEM is very 
suitable to such simulation problems, and it has obvious advantage over the FEM. 
 
3) A square sheet with 100 randomly distributed identical circular inclusions subjected 

to uniform tension on the opposite edges 
Figure 9 shows the computational model. The side length of this square sheet is 100mm, 
the traction on the opposite edges is 10Mpa, the thickness of this square sheet is 1mm, 
and the volume ratio of all 100 inclusions is 0.4. Then the radius of the circular 
inclusion can be determined automatically. The model is taken as a plane stress problem. 
In addition, domain mesh is only needed for plotting results. 

After BEM computation, we can obtain the deformation pattern and stress distribution. 
As examples, Figure 10 shows the deformation pattern for the case of 100 circular holes, 
E2 = 0, Figure 11 and Figure 12 shows the Von-Mises stress distribution of a square 
sheet with 100 randomly distributed identical circular hole under the uniform tension on 
two opposite edges for the case of 2 1/ 0.5E E = .  
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Fig. 9. Model of a square sheet with 100 randomly distributed identical circular 
inclusions under uniform tension on two opposite edges 

 

 

Fig. 10. Deformation pattern of a square sheet with 100 randomly distributed identical 
circular hole under the uniform tension on two opposite edges (E2 = 0) 
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Fig. 11. Deformation pattern of a square sheet with 100 randomly distributed identical 
circular inclusions under the uniform tension on two opposite edges ( 2 1 0.5E E = ) 

 

 

Fig.12. Von-Mises stress distribution of a square sheet with 100 randomly distributed 
identical circular holes under uniform tension on two opposite edges ( 2 1/ 0.5E E = ) 

Z. Yao et al. / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 270-282 (2003)

280



 
Concluding Remarks 
 
1) A scheme of the BEM for the simulation of 2D elastic bodies with randomly 

distributed circular inclusions has been presented in this paper. The given numerical 
examples indicate its high accuracy and high efficiency.  

2) As for the elastic bodies with randomly distributed identical circular inclusions, the 
presented BEM scheme has a distinctive advantage over the FEM due to high stress 
gradient resulted from the presence of many very close inclusions. 

3) The presented BEM scheme can be generalized without difficulty to the elastic 
bodies with randomly distributed inclusions of different geometrical sizes, different 
shapes (elliptical inclusion with different shape and principal direction, cracks with 
different direction, etc.) and different elastic modulus. 

4) The presented BEM scheme can be applied to estimate the equivalent elastic 
properties of corresponding composite materials. 

5) The presented BEM can be combined with some kind of fast multipole algorithms. 
It is possible to efficiently simulate the elastic bodies with much more different 
inclusions with such fast algorithms. 

Since this manuscript was submitted two years ago, some related investigations in the 
authors’ group have been published[17-20]. In those investigations, a large number of 
numerical examples of the 2D elastic solids with randomly distributed inclusions, using 
repeated similar sub-domain BEM, have shown that this method has higher accuracy 
and higher efficiency, and provides an efficient tool for the numerical simulations of 
corresponding composite materials. This method can be applied to simulate not only the 
2D solids with inclusions of different shapes, sizes and materials, but also the inclusions 
with interphases layers. By applying the fast multipole BEM into this field, the scale of 
the computation can be increased. In a preliminary investigation, the number of 
inclusions simulated was increased from 100 to 1600. 

Further investigations will be carried out in two directions: on the one hand, it will be 
developed from 2D to 3D problems; on the other hand from the simulation of effective 
elastic moduli to simulations of the failure process of such composite materials. 
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