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Abstract  
 In this paper, we derive three-dimensional Green’s functions of point-force/point-
charge in anisotropic and piezoelectric bimaterials for six different interface models. 
Mechanically, the six interface models are either in perfect or smooth contact along the 
interface; electronically, they can be closed, open interface, or with continuous electrical 
potential and normal electrical displacement component along the interface. By 
introducing certain modified bimaterial Stroh matrices, along with the extended Stroh 
formalism and the Mindlin’s superposition method, the bimaterial Green’s functions for 
the six interface conditions are expressed in terms of a concise and mathematically 
similar uniform form. That is, the physical-domain bimaterial Green’s functions can all 
be expressed as a sum of a homogeneous full-space Green’s function in an explicit form 
and a complementary part in terms of simple line-integrals over [0, π] suitable for 
standard numerical integration. Furthermore, utilizing a direct connection between the 
2D and 3D Stroh matrices observed in this paper, the corresponding 2D bimaterial 
Green’s functions are also derived, in exact-closed form, for the six interface conditions.  
 Based on the bimaterial Green’s functions, the effects of different interface 
conditions on the mechanical and electrical fields are discussed. It is noted that only the 
complementary part of the solution contributes to the differences of the mechanical and 
electrical fields arising from different interface conditions. Also, numerical examples are 
presented for the Green’s functions in the bimaterials made of two half-spaces with two 
typical piezoelectric materials, quartz and ceramic. Certain new features are observed 
which could be of great interest to the design of piezoelectric composites and to the 
numerical modeling of strained quantum devices using the boundary element method.  
 
1. Introduction 
 Green’s functions in anisotropic and fully coupled piezoelectric solids are of 
great importance in the analyses of micromechanical devices (Yang and Tiersten 1997; 
Fang et al., 2001), composite structures (Suo et al., 1992; Dunn and Taya, 1993; Ting, 
1996, 2000, 2001), and certain generalized Hertzian contact problems (Willis, 1966; Fan 
et al, 1996; Chen, 1999; Chen et al., 1999). More importantly, piezoelectric Green’s 
functions are required in the boundary integral equation method for the modeling of 
piezoelectric structures (Pan, 1999; Denda and Lua, 1999; Liu and Fan, 2001; Davi and 
Milazzo, 2002).  
 In recent years, both two-dimensional (2D) and three-dimensional (3D) Green’s 
functions and related analytical methods have been developed for, and applied 
particularly to, the study of the strain-induced semiconductor quantum structures where 
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the quantum wire/dot growth directly effects the electronic and optical performance (see, 
e.g., Andreev et al., 1999; Davies, 1998, 1999; Davies and Larkin, 1994; Faux and 
Pearson, 2000; Faux et al., 1996, 1997; Freund, 2000; Freund and Gosling, 1995; 
Gosling and Willis, 1994, 1995; Larkin et al., 1997; Holy et al. 1999; Park and Chuang, 
1998; Pearson and Faux, 2000; Hearne et al., 2000; Romanov et al. 2001; Einfeldt et al., 
2001). Even with a purely elastic model or certain semi-coupled piezoelectric models, 
some interesting results have been found on the effect of crystal anisotropy (Faux and 
Pearson, 2000), on the relations between the elastic field and the orientation and ordering 
of the quantum dot and superlattice growth (Grundmann et al., 1995; Davies, 1998, 
1999; Holy et al. 1999), and on the piezoelectric effect (Grundmann et al., 1995; Davies, 
1998, 1999). It is apparent that a fully coupled anisotropic and piezoelectric model would 
be more reliable should a numerical modeling result be applied to the design process in 
the semiconductor devices. Such a numerical study, however, requires the fully coupled 
piezoelectric Green’s function, which unfortunately, poses great difficulties due to the 
crystal anisotropy and piezoelectric coupling. Recently, Ru (2001) solved the Eshelby’s 
problem in a piezoelectric bimaterial plane with fully coupled constitutive relation, and 
the author (Pan, 2002a) derived the generalized Mindlin solution in an anisotropic and 
piezoelectric half-space with general boundary conditions on the surface. Ru’s (2001) 
analytical solutions and Pan’s (2002a) numerical results have both clearly indicated the 
effect of different piezoelectric boundary conditions on the surface response of both 
mechanical and electrical quantities. Therefore, these fully coupled 2D and 3D solutions 
provide the mathematical formulation that can be applied to the analysis of the strained 
quantum dot growth and other related problems. Actually, the author has been able to 
apply successfully the generalized Mindlin solution (Pan, 2002a) to calculate the 
quantum dot induced elastic and piezoelectric fields in certain semiconductor substrates 
and to show the importance of the fully coupled piezoelectric model in this application 
(Pan, 2002b).   
 Besides the piezoelectric coupling effect, self-assembled quantum-dot structures 
are inherently heterogeneous; in particular, they are often in multilayered structures (see, 
for example, Lee et al., 2001; Yeh et al., 2000). A multilayered structure, with different 
crystal material and interface conditions, will affect the nucleation, ordering, and 
positioning of the quantum dots, and consequently the electronic and optical properties of 
the devices (Grundmann et al., 1995; Holy et al., 1999; Lee et al., 2000; Yang et al., 
2000; Yeh et al., 2000; Kim et al., 2001; Lee et al., 2001). Unfortunately, in such a 
complicated structure, the Green’s function solution in either a homogeneous infinite-
space or half-space is unsuitable. A bimaterial model with suitable interface conditions is 
needed in order to capture the elastic and electric behavior near the interface. While 
several imperfect interface models have been developed for, and applied to, various 
engineering and physical problems associated with purely elastic bimaterial structures 
(see, e.g., Dundurs and Hetenyi, 1965; Benveniste, 1984; Hashin, 1990, 1991; Pagano 
and Tandon, 1990; Gharpuray et al., 1991; Kouris, 1993; Ru, 1998; Yu, 1998; Shilkrot 
and Srolovitz, 1998; Benveniste, 1999; Shuvalov and Gorkunova, 1999; Benveniste and 
Chen, 2001; Hashin, 2001), there is nearly no literature available on the corresponding 
piezoelectric bimaterials with imperfect interface conditions. The only relevant work is 
by Abbudi and Barnett (1990) and Alshits et al. (1994) where they studied the interface 
wave between two anistropic and piezoelectric solids with six different interface 
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conditions. Specifically, they addressed the existence problem on the localized acoustic 
wave on the interface when the six different interface conditions are assumed (Alshits et 
al., 1994). 
 In this paper, we derive analytically the 3D Green’s function of point-force/point-
charge in anisotropic and piezoelectric bimaterials with six different interface models. In 
the six interface models, as in Abbudi and Barnett (1990) and Alshits et al. (1994), the 
mechanical condition is either perfect-bond or smooth-bond; electrically, the interface 
can be open, closed, or with continuous electrical potential and normal electrical 
displacement component. This bimaterial Green’s function for the six interface models is 
obtained uniformly by introducing the modified bimaterial Stroh matrices A, B, and M 
(to be defined latter) and by applying the 2D Fourier transforms in combination with 
Mindlin’s superposition method. More specifically, it is expressed as a sum of the 
infinite-space Green’s function and a complementary part. While the former is in an 
explicit form, as previously derived by Pan and Tonon (2000), the latter is expressed in 
terms of a simple line integral over [0, π]. With the exception of the bimaterial Green’s 
function for the perfect-bond interface (Ding et al., 1997; Dunn and Wienecke, 1999; Pan 
and Yuan, 2000), the Green’s function solutions with other five (imperfect) interface 
models are presented for the first time. We also remark that the present methodology can 
be employed to find the bimaterial Green’s functions corresponding to many other 
interface models. Furthermore, a direct connection between the 2D and 3D Stroh 
matrices (Ting, 1996) is also observed and thus used to derive the 2D bimaterial Green’s 
functions (in the exact-closed form) for the six different interface models.  
 The effect of different interface conditions on the mechanical and electrical 
quantities is then studied. To illustrate the significance of different interface models as 
well as the electromechanical coupling in the analysis of the piezoelectric problem, 
numerical examples are carried out for two bimaterial systems made of two typical 
piezoelectric materials, namely, the quartz with weak coupling and ceramic with strong 
coupling. Depending upon the source type (mechanical or electrical point source) and 
source location (in quartz or ceramic half-space), various interesting new features are 
observed which could be of great interest in the design of piezoelectric composites, in the 
study of the 3D Eshelby’s problem (Eshelby, 1957; Mura, 1987), and in the numerical 
modeling of strained quantum devices based on the 2D and 3D bimaterial Green’s 
function methods. 
 This paper is organized as follows: In section 2, the bimaterial Green’s function 
problem is defined along with the mathematical equations and the six different interface 
models. In section 3, we derive the general solution in the Fourier-transformed domain 
by introducing certain modified Stroh matrices. While in section 4 the physical-domain 
bimaterial Green’s solution is presented, the effect of different interface conditions on the 
mechanical and electrical fields is studied in section 5. Numerical examples are given in 
section 6, and certain conclusions are drawn in section 7, along with a brief discussion on 
how the present analytical bimaterial Green’s functions can be applied to 2D quantum 
wire and 3D quantum dot analyses. Throughout this paper, by Green’s functions, we 
mean the elastic displacements and electrical potential, elastic stresses and electrical 
displacements, and derivatives of them with respect to the source coordinates. 
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2. Description of the Generalized Bimaterial Problem 
 Consider an anisotropic and piezoelectric bimaterial full-space where 03 >x  and 

03 <x  are occupied by materials 1 and 2, respectively (Figure 1), with interface being at 
x3 = 0 plane. Without loss of generality, we assume that an extended point force f = (f1, f2, 
f3, -q)t is applied in material 1 at source point d ≡ )0,,( 321 >≡ dddd , with the field point 
being denoted by x ≡ ),,( 321 zxxx ≡ *. Following Pan and Yuan (2000), we artificially 
divide the problem domain into three regions: z > d (in material 1), 0 ≤ z < d (in material 
1), and z < 0 (in material 2). Within each region, the equilibrium equation and 
constitutive law can be written, in terms of a shorthand notation (see, Barnett and Lothe, 
1975; Pan, 1999), as 

0, =iiJσ                                                            (2.1) 

KliJKliJ C γσ =                                                         (2.2) 
In equation (2.1) and (2.2), lowercase (uppercase) subscripts take the range from 1 to 3 
(1 to 4), and summation over repeated subscripts is implied.  

 

•-q 

   Interface 
(x1-x2 plane)

x1 

x2 

f=(f1, f2, f3,-q) 
x3 

f1 

f2 f3 

d 

Material 1

Material 2
 

Figure 1. An anisotropic piezoelectric bimaterial full-space subjected to an extended 
concentrated force f applied at point (0,0,d>0) in material 1 under 3D deformation. 
Under 2D deformation in the (x1,x3)- or (x,z)-plane, the extended force f and also an 
extended dislocation b are applied along the line in the x2-direction, which intercepts the 
(x1,x3)-plane at (0,d>0) in material 1. 
 The extended field quantities, including the displacement, strain, stress, and 
stiffness matrix, are defined as (Barnett and Lothe, 1975; Dunn and Taya, 1993; Pan, 
1999) 





=
=

=
4,

3,2,1,
I
Iu

u i
I φ

                                                        (2.3) 

                                                           
* Thereafter, the scalar variables z and d will be used exclusively for the third field and 
source coordinates x3 and d3, respectively. 
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In equations (2.3)-(2.6), ui and φ are the elastic displacement and electrical potential, 
respectively; γij is the elastic strain and Ei the electrical field; Cijlm, eijk, and εij are the 
elastic moduli, the piezoelectric coefficients, and the dielectric constants, respectively. 
We remark that while these coefficients are required to satisfy the well-known symmetry 
conditions (Pan, 1999), the decoupled state (purely elastic and purely electrical 
deformations) can be obtained by simply setting eijk = 0. This decoupled state and other 
semi-coupled approaches were adopted in most previous studies in strained quantum 
devices.  
 In the following sections, we will also use the extended displacement for the 
elastic displacement and electrical potential as defined by (2.3), the extended stress for 
the stress and electrical displacement as defined by (2.5), and the extended stiffness 
matrix for all the material constants as defined by (2.6). Furthermore, the extended 
traction and in-plane stress vectors defined as below will be also used in the paper: 

tt

tt

DDsssss

Dtttt

),,,,(),,,,(
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2122121154321

33332314321

σσσ

σσσ

≡=

≡=

s

t                   (2.7a,b) 

 To solve equations (2.1) and (2.2), a suitable interface condition and the 
condition across the source level need to be described. In this paper, we will restrict 
ourselves to the following six interface models, although more general interface 
conditions can be considered.  
Model 1: The extended displacement and traction vectors are continuous across the 
interface, i.e., 

4,3,2,1;, 0
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0
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Jttuu zJzJzJzJ                          (2.8) 

This is, perhaps, the most frequently studied interface model in piezoelectric bimaterial 
system. Recently, Pan and Yuan (2000) derived the corresponding bimaterial Green’s 
functions using the extended Stroh formalism and the Mindlin’s superposition method. In 
the following discussion, this model will be named as the perfect-bond interface model, 
while the other five models will be called imperfect interface models for simplicity. 
Model 2: The mechanical displacement and traction vectors are continuous across the 
interface, and the electrical potential is zero along the interface, i.e., 
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It is seen that this interface is electrically closed (Alshits et al., 1994) or it is an electrical 
wall, and is a very common case in electromagnetic studies (see, Papas, 1988 or Volakis 
et al., 1998). Furthermore, for advanced composites which are made of piezoelectric and 
purely elastic but ideal conductive materials, the interface condition between the 
piezoelectric and elastic ideal conductor is model 2 where the electric potential along the 
interface is zero. Very recently, Tevaarwerk et al. (2002) studied electrically isolated 
quantum dots and argued that such special quantum dots are promising candidates for 
charge storage in future silicon nanoelectronics. The electrically isolated SiGe QDs are 
grown on ultrathin silicon-on-insulator where the thin layer of silicon acts as a conductor 
which could be approximated with the interface model 2. The metal-insulator-
semiconductor (MIS) structures have been long used in semiconductor industry for high 
performance field-effect transistors (see, e.g., Reed et al, 1994) where the interfaces 
between metal/insulator and insulator/semiconductor need to be modeled suitably, 
perhaps with the interface model 2 as one of the choices in the approximation.  
Model 3: The mechanical displacement and traction vectors are continuous across the 
interface, and the normal electrical displacement is zero along the interface, i.e., 

0
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Similarly, this interface is electrically open (Alshits et al., 1994) or it is a magnetic wall, 
and is again a very common case in electromagnetic studies (see, Papas, 1988 or Volakis 
et al., 1998). 
 In these three models, the mechanical displacement and traction vectors are 
assumed to be continuous across the interface, corresponding to the purely elastic 
bimaterials with perfect-bond interface condition. In the following three models, the 
mechanical perfect-bond condition is replaced by the mechanical smooth-bond condition. 
Model 4: Across the interface, the mechanical displacement and traction vectors are in 
smooth contact, and the electrical potential and normal electrical displacement 
component are continuous:  
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Model 5: Across the interface the mechanical displacement and traction vectors are in 
smooth contact, and along the interface the electrical potential is zero:  
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 We remark that models 4 and 5 are important in describing the connection 
between two materials at elevated temperature (Shilkrot and Srolovitz, 1998) and in 
modeling the bone implants in biomechanics (Gharpuray et al., 1991). 
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Model 6: Across the interface the mechanical displacement and traction vectors are in 
smooth contact, and along the interface the normal electrical displacement component is 
zero: 
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 When an extended point force f = (f1, f2, f3, f4)t is applied in the piezoelectric 
bimaterials at the source point d ≡ ),,( 321 dddd ≡  with d3 > 0, the extended displacement 
and traction vectors are required to satisfy the following conditions (using vector u for 
the extended displacement and vector t for the extended traction, each with four 
components)  

ftt

uu

)()( 2211 dxdx
dzdz

dzdz

−−=−

=

+−

+−

==

==

δδ
                               (2.14) 

In summary, therefore, the bimaterial Green’s function problem is to find the mechanical 
and electrical fields that satisfy (2.1) for the three regions z > d, 0 ≤ z < d, and z < 0, one 
of the interface conditions (2.8)-(2.13), the conditions (2.14) at the source level, along 
with the radiation condition so that the solution in the bimaterial full-space vanishes as |x| 
approaches infinity. 
 
3. Stroh Formalism and Solution in the Transformed Domain 
 Similar to the anisotropic and piezoelectric bimaterial case with interface Model 
1 (i.e, the perfect-bond interface), we first apply the 2D Fourier transforms to the 
problem equations to express the Fourier transformed general solutions in terms of the 
extended Stroh formalism (Ting, 1996; Pan and Yuan, 2000). We then introduce the 
modified bimaterial Stroh matrices in order to find the Fourier transformed bimaterial 
Green’s functions. This is described below.  
 First, the 2D Fourier transforms (i.e., for the two-point extended displacement) 

21
xy

2121 );,,();,,(~ dxdxezxxuzyyu i
KK

ααdd ∫∫=                                      (3.1) 

are applied to equations (2.1), (2.2), and (2.4). In (3.1), α takes the summation from 1 to 
2. We add that, when carrying out the double Fourier inverse transforms later on, a polar 
coordinate transform that relates the Fourier variables (y1,y2), defined below as  

θηθη sin;cos 21 == yy                                                  (3.2) 
will be used. 
 Then, the general solutions in the Fourier transformed domain, which satisfy 
condition (2.14) at the source level and the radiation condition as |x| approaches infinity, 
can be derived as (Ting, 1996; Pan and Yuan, 2000) 
For z > d (in material 1): 
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For 0 ≤ z < d (in material 1): 
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For z < 0 (in material 2):  
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where  
],,,[ 4321* zipzipzipzipzip eeeediage ηηηηη −−−−− =〉〈                     (3.6) 

and 
αααα diyTdiyT ee fAqfAq )(;)( (1)(1) == ∞∞                    (3.7a,b) 

In equations (3.3)-(3.5), pJ (J=1,2,3,4), and A, B, and C are the Stroh eigenvalues and 
eigenmatrices, and their expressions can be found in Pan and Yuan (2000) or Pan 
(2002a). Also in equations (3.3)-(3.5), η is the Fourier radial variable defined by 
equation (3.2).  
 The complex vectors )1(q  and )2(q in equations (3.3)-(3.5) are to be determined 
by the interface conditions. While these two complex vectors are different for different 
interface conditions, a concise and unified expression can be derived for them by 
introducing certain modified Stroh matrices. This procedure is illustrated below for the 
six different interface models. 
Model 1: For the perfect-bond interface Model 1, it is found that the complex vectors 

)1(q and )2(q are required to satisfy the following two vector conditions (Ting, 1996; Pan 
and Yuan, 2000) 

)2()2()1()1()1( )1(
* qAqAqA =−〉〈 ∞dipe η                           (3.8a) 

 )2()2()1()1()1( )1(
* qBqBqB =−〉〈 ∞dipe η                         (3.8b) 

Model 2: For this interface model, the continuity conditions of the mechanical 
displacement and traction vectors across the interface and the condition that the electrical 
potential is zero on the interface give the following interface equations from which the 
complex vectors )1(q  and )2(q are to be solved: 
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It is seen that it would be very complicated if one solves directly these equations for the 
complex vectors )1(q  and )2(q . However, by some simple additions and subtractions, 
these equations can be grouped into two matrix equations that are equivalent to the 
above. In this way, we found that: 
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 (3.10b) 
The structure of this linear system for the complex vectors )1(q  and )2(q  is now similar to 
that for the interface Model 1 (3.8a,b). Consequently, the solution for the complex 
vectors )1(q  and )2(q  should also have a similar structure as for the interface Model 1 if 
certain modified Stroh matrices are introduced. We now derive the exact solution for 
these two vectors. 
 We have seen that, for the interface Model 1, the solution for the complex vectors 

)1(q  and )2(q has the following simple expression (Pan and Yuan, 2000)  
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where, the matrices G1 and G2 are given by (Pan and Yuan, 2000) 
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with )(αM being the impedance tensors defined as 
)2,1()( 1)()()( =−= − αααα ABM i                             (3.13) 
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It is readily to see that, for the interface Model 2, the solution for the complex vectors 
)1(q  and )2(q can also be expressed by (3.11) but with the matrices G1 and G2 being given 

by 
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where )(ˆ αM are the modified impedance tensors defined as 
)2,1()ˆ(ˆˆ 1)()()( =−= − αααα ABM i                           (3.15) 

with the modified Stroh matrices )(ˆ αA and )(ˆ αB for the interface Model 2 being defined as 
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 Following the same approach, the solution for the complex vectors )1(q  and 
)2(q for other four interface models can also be expressed by (3.14) with the matrices G1 

and G2 being related to the modified Stroh matrices defined by (3.15). What we need to 
do is to find the modified Stroh matrices )(ˆ αA and )(ˆ αB for these models, which are given 
below.  
Model 3: 
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Model 4: 
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Model 5: 
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Model 6: 
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 In summary, equations (3.3)-(3.5) are the bimaterial Green’s functions for the 
extended displacements and stresses in the Fourier transformed domain. For the six 
different interface models, the complex vectors )1(q  and )2(q in (3.3)-(3.5) have been 
derived in a unified form by introducing the corresponding modified bimaterial Stroh 
matrices. With the exception of the bimaterial Green’s functions for the perfect-bond 
interface Model 1, the bimaterial Green’s functions for other five interface models are 
new and are obtained for the first time. Similar to the perfect-bond bimaterial Green’s 
functions (Pan and Yuan, 2000), there are several important features pertaining to these 
Green’s functions. While a detailed discussion can be found in Pan and Yuan (2000) for 
the perfect-bond interface case, we re-state only one of the features closely related to the 
this work and present three new observations associated with the more general interface 
conditions: 
(1) The first term in (3.3) and (3.4) is the Fourier-domain Green’s function for the 

anisotropic and piezoelectric full-space. Since the corresponding physical-domain 
solution has been developed by Akamatsu and Tanuma (1997) and Pan and Tonon 
(2000) in an explicit form, the Fourier inverse transform needs to be carried out only 
for the second term of the solutions, which is similar to the complementary part of 
the Mindlin solution (1936).  

(2) The modified Stroh matrices are introduced only for the purpose of determining the 
complex vectors )1(q  and )2(q . The matrices A, B, and C in (3.3)-(3.5) and later in 
the final expressions for the physical-domain Green’s functions (i.e., equations (5.1), 
(5.2), and (5.5)) are the original and should not be modified. 
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(3) The methodology is not restricted to the six interface models presented in this paper. 
The complex vectors )1(q  and )2(q in (3.3)-(3.5) for other interface models can be 
derived similarly by introducing the corresponding modified Stroh matrices, 
provided that the extended displacement and traction components are uncoupled in 
the interface conditions. 

(4) Under the assumption of 2D deformation, the corresponding anisotropic and 
piezoelectric bimaterial Green’s functions in the physical domain with the six 
interface models can be derived in exact-closed form using directly the 3D 
bimaterial Stroh matrices at the fixed polar angle θ=0. This is developed in 
Appendix A of this paper. 

 
 
 
4. Bimaterial Green’s Functions in the Physical Domain 
 Having obtained the bimaterial Green’s functions in the transformed domain, we 
now apply the inverse Fourier transform to equations (3.3)-(3.5). To handle the double 
infinite integrals, the polar coordinate transform (3.2) is applied so that the infinite 
integral with respect to the radial variable can be carried out exactly. Thus, the final 
bimaterial Green’s functions in the physical domain can be expressed in terms of a 
regular line-integral over [0, 2π], which can be further reduced to [0, π] using certain 
properties of the Stroh eigenvalues and Stroh matrices (Pan, 2002a). The procedure is 
very similar to the interface Model 1 solved previously by Pan and Yuan (2000), and one 
needs only to replace the matrices G1 and G2 with those corresponding to the given 
interface conditions. Therefore, we only list the final results while a similar and detailed 
derivation can be found in Pan and Yuan (2000) for the piezoelectric bimaterials with 
perfect-bond interface Model 1. We further emphasize that the modified bimaterial Stroh 
matrices are used only in the expressions for the matrices G1 and G2.  
 Assuming that z ≠ 0 or d ≠ 0, the 4×4 Green’s function tensor, with its first index 
for the extended displacement component and the second for the extended point-force 
direction, is found to be 
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In equation (4.1), );( dxU∞ denotes the Green’s function tensor for the extended 
displacements in the full-space with material 1 (Pan and Tonon, 2000), and in equation 
(4.2), the indices I and J take the range from 1 to 4. Similarly, the bimaterial Green’s 
functions for the extended stresses (traction and in-plane stress) can be derived as: 
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In equation (4.3), );( dxT ∞ and );( dxS∞ are the Green’s functions for the extended 
stresses in the full-space with material 1 (Pan and Tonon, 2000), and 
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 Therefore, in material 1, the bimaterial Green’s function is expressed as a sum of 
the explicit full-space Green’s function and a complementary part in terms of a line 
integral over [0, π]; In material 2, the bimaterial Green’s function is expressed in terms of 
a line integral over [0, π]. Concerning the complicated nature of the problem and the 
final concise expression for the bimaterial Green’s function, it is concluded that the 
extended Stroh formalism is truly mathematically elegant and numerically powerful 
(Ting, 1996), especially when used jointly with the modified bimaterial Stroh matrices 
introduced in this paper. Furthermore, with regard to these physical-domain bimaterial 
Green’s functions (i.e., equations (4.1), (4.3), and (4.4)), the following important 
observations can be made, with some of them being similar to those made in Pan and 
Yuan (2000): 
(1) For the complementary part of the solution in material 1 and the solution in material 

2, the dependence of the solutions on the field point x and source point d appears 
only through matrices )1(

uG , )1(
tG , )2(

uG , and )2(
tG defined in (4.2) and (4.5)-(4.7).  

(2) The integrals in (4.1), (4.3), and (4.4) are regular if z ≠ 0 or d ≠ 0, and thus can be 
easily carried out by a standard numerical integral method such as the Gauss 
quadrature.  

(3) If z ≠ 0 and d = 0, the bimaterial Green’s function is still mathematically regular 
although some of its components may not have a direct and apparent physical 
meaning (see, Dundurs and Hetenyi, 1965, for the purely elastic counterpart).  

(4) When the field and source points are both on the interface (i.e., z = d = 0), the 
bimaterial Green’s function is then reduced to the interfacial Green’s function. For 
this special case, the line integral involved in the Green’s function expression 
becomes singular and the resulting finite-part integral needs to be handled with 
special cares (Pan and Yang, 2003). 
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5. Effects of Interface Conditions  
 Effect of different interface conditions on the mechanical and electrical fields 
has never been studied in the literature when the mechanical and piezoelectric coupling is 
involved. This effect, however, is very important in the piezoelectric composite design 
and in the modeling of advanced electronic quantum devices. In the following, we offer a 
systematic discussion on this issue based on the solution derived above. It is seen that the 
effects of different interface conditions can be studied in a unified and concise form.  

Similar to the generalized Mindlin problem in an anisotropic and piezoelectric 
half space with general boundary conditions (Pan, 2002a), the infinite-space Green’s 
function is found to have no influence on the correction to, or difference of, the 
mechanical and electronic quantities arising from different interface conditions. It is the 
complementary part of the bimaterial solution that contributes to the correction, which is 
in turn controlled by the matrix G1 or G2.  
 In the study presented below, we restrict ourselves to the case where the source 
point d is within material 1 (d > 0) but the field point x can be anywhere in the 
bimaterials. Furthermore, the correction is relative to the bimaterial Green’s function 
corresponding to the perfect-bond interface Model 1. We also mention that results for the 
derivatives of the extended displacements and stresses will not be given but can be 
obtained trivially. 
 For the field point in material 1 (i.e., z > 0), we found that 
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In equations (5.1)-(5.4), the extended displacement and stress fields with a vertical line 
followed by the subscript 1 are the bimaterial Green’s functions corresponding to the 
interface Model 1, and those followed by the subscript M (=2, 3, 4, 5, and 6) correspond 
to the other five interface models.  
 Similarly, for the field point in material 2 (i.e., z < 0), the corrections are  
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 These results (i.e., equations (5.1)-(5.7)) are believed to be new, and should be 
particularly useful when studying the effect of different interface models on the 
mechanical and electrical fields. Furthermore, the exact-closed form Green’s functions 
derived in Appendix A for the corresponding 2D bimaterial case with the six different 
interface models enable one to carry out various parametric studies on the effect of 
different interface conditions using the expression similar to (5.1), (5.2), and (5.5). 
Numerical examples in the next section for the 3D bimaterial Green’s functions show 
several new features that could be of special interest. 
 
6. Numerical Examples  
 Having derived the bimaterial Green’s function and discussed the effect of 
different interface conditions on the mechanical and electrical quantities, we now 
illustrate some of the Green’s components by numerical examples. Two typical 
piezoelectric materials (Pan, 2002a) are selected for the bimaterial full-space: One is a 
left-hand quartz in a rotated coordinate system (Tiersten, 1969) with elastic constants, 
piezoelectric coefficients, and dielectric constants being, respectively,   
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Another one is the poled lead-zirconate-titanate (PZT-4) ceramic (Dunn and Taya, 1993) 
with elastic constants, piezoelectric coefficients, and dielectric constants being, 
respectively,   
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It is noted that while the quartz is a weakly coupled piezoelectric material, the ceramic is 
a strongly coupled one, with the degree of the electromechanical coupling, defined as 

)(/ maxmaxmax Ceg ε= , being equal to 0.07 and 0.5, respectively.   
 Numerical results are presented for the elastic stress and electrical displacement, 
caused by a point force of 1N/m3 or a negative point electrical charge of 1C/m3. While 
the source is fixed at d=(0,0,1m) in material 1 (i.e., the upper half-space with z>0), the 
field point varies along a vertical line as x=(1m,1m,z), z∈[-3m,3m]. Two bimaterial 
systems are considered: For system 1, materials 1 and 2 are, respectively, ceramic and 
quartz, denoted by ceramic/quartz; whilst for system 2, materials 1 and 2 are, 
respectively, quartz and ceramic, denoted by quartz/ceramic. 
 In each figure, six curves are plotted, with M1 to M6 corresponding to the 
interface Models 1 to 6, respectively, and with the results for the interface Model 1 being 
the same as those reported by Pan and Yuan (2000). By presenting the results for all the 
interface models, the corrections to the field quantities due to different interface models, 
discussed in the previous section, can be observed directly from these figures. 
Furthermore, according to the field and source types, the numerical results are grouped 
into four cases and are discussed below: 

1). Electrical response due to a mechanical point source:  
 Figures 2a and 2b show, respectively, the variation of the electrical displacements 
Dx and Dz along the vertical line x=(1m,1m,z) in the ceramic/quartz bimaterials due to a 
point force in the z-direction (i.e. Fz). The corresponding Dx and Dz in the quartz/ceramic 
bimaterials are plotted in Figures 2c and 2d. It is observed from these figures that when a 
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mechanical point source is applied, different interface models can produce significantly 
different electrical responses in the strongly electromechanically coupled ceramic half-
space. However, a mechanical point source causes negligible electrical displacements in 
the weakly coupling quartz half-space for all six different interface models. Furthermore, 
the effect of different interface models on the electrical displacement in the ceramic half-
space due to a mechanical point source in the same half-space is very strong, with 
different interface models predicting quite different amplitudes for the electrical 
displacement. A final feature, as shown in Figures 2c and 2d and may be useful when 
designing piezoelectric composites, is that even when a mechanical force is applied in the 
weakly coupled quartz domain, a substantial electrical displacement can still be produced 
in the adjacent ceramic domain, with different amplitudes and even different shapes.   
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Figure 2. Variations of electrical displacements Dx and Dz along vertical line 
x=(1m,1m,z) in the ceramic/quartz bimaterials (a & b) and quartz/ceramic bimaterials (c 
& d) due to a point force of 1N/m3 applied at d=(0,0,1m) in the z-direction. Curves M1 to 
M6 correspond to the interface Models 1 to 6, respectively.  

2). Mechanical response due to an electrical point source: 
 While Figures 3a and 3b show, respectively, the variation of the elastic stress 
components σxx and σzz along the vertical line x=(1m,1m,z) in the ceramic/quartz 
bimaterials due to a negative point electrical charge (i.e., F4), Figures 3c and 3d show the 
corresponding variation of σxx and σzz in the quartz/ceramic bimaterials. Similar to the 
first case, different interface models can have a great influence on the stress distribution 
when a point electrical source is applied. In other words, it is possible to produce certain 
required stress responses when an electrical point source is applied to a piezoelectric 
bimaterial system if different interface models are incorporated into the design plan. 
Furthermore, two interesting features can be observed from Figures 3a and 3b: First, the 
interface Models 1 and 3 (mechanical perfect-bond), and Models 4 and 6 (mechanical 
smooth-bond) predict, respectively, nearly identical stresses (components σxx and σzz), 
implying that, in this situation, the normal stress field alone cannot differentiate the 
electrically open interface condition from the perfect-bond electrical interface condition 
(i.e., the electrical potential and the normal electrical displacement component are 
continuous across the interface). Second, when an electrical point source is applied in the 
strongly coupled ceramic half-space, the responses of the normal stress component σzz in 
both half-spaces are roughly divided into two groups (Figure 3b): One is related to the 
interface Models 2 and 5, and the other to the other four interface models. Since Models 
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2 and 5 have the same electrical interface condition, i.e., electrically closed interface, we 
conclude that the normal stress component σzz in both half spaces is mainly controlled by 
the electrically closed interface condition; Other two types of electrical interface 
conditions as well as the two mechanical interface conditions have only a weak effect on 
this stress component.  
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Figure 3. Variations of stress components σxx and σzz along vertical line x =(1m,1m,z) in 
the ceramic/quartz bimaterials (a & b) and quartz/ceramic bimaterials (c & d) due to a 
negative point electrical charge of 1C/m3 applied at d=(0,0,1m). Curves M1 to M6 
correspond to the interface Models 1 to 6, respectively.  
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3). Electrical response due to an electrical point source: 
 Figures 4a and 4b show the variation of the electrical displacement components 
Dx and Dz, respectively, along the vertical line x=(1m,1m,z) in the ceramic/quartz 
bimaterials due to a negative point electrical charge. The corresponding Dx and Dz in the 
quartz/ceramic bimaterials are plotted in Figures 4c and 4d. It is very interesting that for 
the ceramic/quartz bimaterials (i.e., Figures 4a and 4b), while the electrical displacements 
in the quartz half-space are negligible, those in the ceramic half space (i.e. in the source 
half space) clearly fall into two groups with one corresponding to Models 2 and 5, and 
the other to the remaining four interface models. That is, for this situation, the electrical 
response due to an electrical point source is very sensitive to the electrically closed 
interface condition; the electrical displacements due to other mechanical or electrical 
interface conditions all predict nearly identical results. If, however, the bimaterial system 
is quartz/ceramic, then the result becomes quite different (Figures 4a and 4b): In the 
ceramic half-space, i.e., the source-free half space, the distributions of the electrical 
displacements are different for different interface models; In the source-loaded half space 
(i.e., in the quartz half space), on the other hand, the responses are clearly separated into 
two groups: one corresponds to the interface Models 3 and 6, and the other to other four 
interface models. In other words, for this situation and in the weakly electromechanically 
coupled source-loaded half-space, the electrical displacement is very sensitive to the 
electrically open interface condition; Responses due to other interface conditions are very 
close to each other. 
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Figure 4. Variations of electrical displacement components Dx and Dz along vertical line 
x=(1m,1m,z) in the ceramic/quartz bimaterials (a & b) and quartz/ceramic bimaterials (c 
& d) due to a negative point electrical charge of 1C/m3 applied at d=(0,0,1m).  Curves 
M1 to M6 correspond to the interface Models 1 to 6, respectively.  

4). Mechanical response due to a mechanical point source: 
 While the stress components σxx and σzz along the vertical line x=(1m,1m,z) in 
the ceramic/quartz bimaterials due to a point force in the z-direction are plotted, 
respectively, in Figures 5a and 5b, the corresponding σxx and σzz in the quartz/ceramic 
bimaterials are depicted in Figures 5c and 5d. It is apparent that, the stresses are more or 
less divided into two groups that are mainly controlled by the mechanical perfect-bond 
and smooth-bond interface conditions. The electrical interface conditions have only a 
weakly influence on the stress distribution, with the stresses from interface Models 2 and 
5 (with mechanical perfect-bond and smooth-bond respectively, but with electrically 
closed interface for both) being slightly distinct from these two groups (Figure 5a-5d). 
This means that in certain situations, the electrically closed interface condition may 
disturb the stress distributions due to a mechanical source.  
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Figure 5. Variations of stress components σxx and σzz along vertical line x =(1m,1m,z) in 
the ceramic/quartz bimaterials (a & b) and quartz/ceramic bimaterials (c & d) due to a 
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point force of 1N/m3 applied at d=(0,0,1m) in the z-direction. Curves M1 to M6 
correspond to the interface Models 1 to 6, respectively.  
 
7. Conclusions 
 In this paper, we have derived the 3D Green’s functions of point-force and point-
charge in anisotropic and piezoelectric bimaterials with six different interface models. By 
introducing certain modified bimaterial Stroh matrices, along with the extended Stroh 
formalism and the Mindlin’s superposition method, the Green’s functions have been 
expressed in terms of a concise and mathematically similar uniform form. With the 
exception of the bimaterial Green’s function corresponding to the perfect-bond interface 
Model 1, which was solved previously by Pan and Yuan (2000), the Green’s function 
solutions for other five interface models are solved for the first time. Furthermore, the 
corresponding 2D Green’s functions, in an exact-closed form, for these six different 
interface models, have been also derived using directly the 3D Stroh matrices at a fixed 
polar angle.  
 The effect of different interface conditions on the mechanical and electrical 
quantities has been also studied and discussed in details. To illustrate the significance of 
different interface conditions, Green’s elastic stresses and electrical displacements are 
calculated for two bimaterial systems made of two typical piezoelectric materials, 
namely, the quartz with weak coupling and ceramic with strong coupling. Based on the 
numerical results, the following new features have been observed: 
1). When a mechanical point source is applied, different interface models can produce 

significant different electrical responses (for both the amplitude and shape) in the 
strongly coupled ceramic half-space and negligible electrical displacements in the 
weakly coupling quartz half-space.  

2). When an electrical point source is applied, the interface Models 1 and 3 (mechanical 
perfect-bond), and Models 4 and 6 (mechanical smooth-bond) predict, respectively, 
nearly identical stresses (components σxx and σzz), implying that the normal stress 
field alone cannot differentiate the electrical open interface condition from the 
perfect-bond electrical interface condition (i.e., the electrical potential and the normal 
electrical displacement component are continuous across the interface). Furthermore, 
when an electrical point source is applied in the strongly coupled ceramic half-space, 
the responses of the normal stress component σzz in both half-spaces are roughly 
divided into two groups: One is related to the interface Models 2 and 5 (electrically 
closed interface), and the other to the other four interface models.  

3). When an electrical point source is applied in the ceramic half-space, the electrical 
displacements in the quartz half-space are negligible, while those in the ceramic half-
space clearly fall into two groups with one corresponding to Models 2 and 5 
(electrically closed interface), and the other to the remaining four interface models. 
If, however, an electrical point source is applied in the quartz half-space, then the 
distributions of the electrical displacements in the quartz half-space are clearly 
separated into other two groups: one that corresponds to the interface Models 3 and 6 
(electrically open interface), and the other to the other four interface models. 
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4). When a mechanical point source is applied, the responses of the stresses, in particular, 
the horizontal normal stress component σxx, are more or less divided into two groups 
that are mainly controlled by the mechanical perfect-bond and smooth-bond interface 
conditions. However, the electrically closed interface condition may disturb the stress 
distributions.  

 These coupling features in anisotropic and piezoelectric bimaterials with 
imperfect interface conditions are new and should be of special interest in the design of 
piezoelectric composites, in the study of the Eshelby’s problem, and in the numerical 
modeling of strained semiconductor devices based on the bimaterial Green’s function 
method. In particular, to apply the present solutions to the modeling of 2D quantum wire 
and 3D quantum dot semiconductor structures, a generalized Betti’s reciprocal theorem 
can be employed that connects, in 3D for example, the point-force/point-charge Green’s 
function to the point-eigenstrain (or point quantum dot) Green’s function (Pan, 2002b).  
 
Appendix A: 2D Piezoelectric Bimaterial Green’s Functions with 
Imperfect Interfaces 
 Similar to the 3D bimaterial Green’s function studies presented in the main text, 
we consider an anisotropic and piezoelectric full-space made of two half-spaces with 
interface at z=0. Again, let us assume that materials 1 and 2 occupy the upper (z>0) and 
lower (z<0) half-spaces, respectively (Figure 1). Here, however, it is required that the 
deformation is independent of the y-coordinate (i.e., the generalized plane strain 
deformation in the (x,z) plane). We further let an extended line force f = (f1, f2, f3, -q)t and 
an extended line dislocation (i.e., a Burgers vector) b =(∆u1, ∆u2, ∆u3, ∆φ)t be applied at 
(x,z)= (0,d) with d>0 in material 1 (Figure 1). We remark that under the 2D deformation 
assumption, the bimaterial Green’s function for the perfect-bond interface Model 1 can 
be derived using the one-complex-variable function approach (Suo et al., 1992; Pan, 
1999). However, for the more general interface models discussed in this paper, the Stroh 
formalism is found to be more convenient. 
 Similar to the purely elastic bimaterial case (Ting, 1996), it can be shown that 
the analytical bimaterial Green’s functions (i.e., the extended displacements and stress 
functions) can be expressed as 
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for z>0 (material 1), and  
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for z<0 (material 2). In equations (A1) and (A2), ψ is the extended stress function vector 
related to the elastic stresses and electrical displacements by 
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1,33,1 ; JJJJ ψσψσ =−=                                         (A3) 
Also in equations (A1) and (A2), Im stands for the imaginary part, and the superscripts 
(1) and (2) denote, as in the text, the quantities associated with the material 1 and 2, 
respectively; 

)(α
Jp , A(α), and B(α) are the Stroh eigenvalues and matrices, depending only 

upon the extended stiffness matrix defined by (2.6). It is pointed out that these 2D Stroh 
quantities can be directly reduced from their 3D counterparts by setting θ=0 (Pan, 
2002a), an interesting direct connection between the 2D and 3D Stroh quantities that has 
not been observed before. Finally in equations (A1) and (A2), 
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 with the complex variable )(α

Jz  being defined by 
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It is noted that the first term in equation (A1) corresponds to the full-plane Green’s 
functions (with material properties of material 1) with 

bBfAq TT )()( (1)(1) +=∞                                    (A6) 
The second term in equation (A1) and the solution in material 2 (equation (A2)) are the 
complementary parts of the solution with the complex constant vectors )(α

Jq (α=1,2; 
J=1,2,3,4) to be determined. For a perfect-bond interface at z=0, i.e., the interface Model 
1, these constants are required to satisfy the following conditions (J=1,2,3,4) 

∞

∞

=+

=+

qIBqBqB

qIAqAqA

JJJ

JJJ
)1()2()2()1()1(

)1()2()2()1()1(

                                   (A7) 

with 

]1,0,0,0[;]0,1,0,0[
]0,0,1,0[;]0,0,0,1[

43

21

diagdiag
diagdiag

==
==

II
II                                  (A8) 

Equation (A7) has a similar structure as equations (3.8a,b). Therefore, the solution for the 
involved complex constants are readily found to be (Ting, 1996) 
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where )(αM are the impedance tensors (as defined in equation (3.13)) with the Stroh 
matrices A(α) and B(α) depending upon the material properties only. 
 Following the same procedure, the complex constants involved in the bimaterial 
Green’s solutions (A1) and (A2) for the other five interface Models can also be 
determined. Similar to equation (A9), the solution can be written as 
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where )(ˆ αM  (α=1,2) are the modified impedance tensors defined by equation (3.15), and 
the modified Stroh matrices )(ˆ αA  and )(ˆ αB (α=1,2) by equations (3.16) to (3.20) for the 
five imperfect interface Models, with the polar angle θ being fixed at 0. It is obvious that 
the difference between the 2D and 3D expressions for the modified impedance tensors 
and Stroh matrices is that for the 2D deformation, they are functions of the extended 
stiffness matrix only; but for the 3D deformation, they depend also on the Fourier 
transform variable θ. We further emphasize that, for both the 2D and 3D deformations, 
the modified Stroh matrices are used only in the process of determining the involved 
complex constants. 
 With the bimaterial Green’s functions for the extended displacements and 
stresses being given by equations (A1) and (A2), the effect of different interface 
conditions on the mechanical and electrical fields can be studied analytically. 
Furthermore, their derivatives with respect to the field and source points can be 
analytically carried out and the resulting Green’s functions can then be applied to various 
problems involving bimaterial full-planes with imperfect interfaces. Similar to the 
corresponding 3D deformation, the 2D bimaterial Green’s functions for the five 
imperfect interface models have not been reported in the literature, and further extension 
to other imperfect interface models are also possible based upon the same methodology. 
We further remark that since these 2D bimaterial Green’s functions are in exact-closed 
form, they will be particularly useful in the analysis of strained quantum wire problems 
(see, i.e., Freund and Gosling, 1995, Gosling and Willis, 1995, and Ru, 2001).   
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