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Abstract 
 
This paper reviews recent developments in the application of the boundary element 
method (BEM) to muffler and silencer analysis.  Initial results of modeling built-in 
catalyst converters are also presented.  A so-called “direct mixed-body boundary 
element method” has been developed for muffler and silencer analysis since 1996.  The 
idea of the method is to integrate all kinds of different boundary and internal surfaces 
into a single integral equation set without using the conventional multi-domain 
approach, even though there may be different media in the domain.  A key ingredient in 
this method is the hypersingular integral equation.  The concept of the direct mixed-
body BEM is not totally against the conventional multi-domain BEM, though.  For very 
large structures or at high frequencies, a multi-domain or substructuring approach is 
still necessary in order to reduce the memory usage as well as the computation time.  
With the direct mixed-body BEM, each substructure does not need to be a well-defined 
and homogeneous subdomain.  As such, substructuring can be done more naturally 
along the longitudinal direction.  Catalyst converters may also be modeled as a modular 
in the general framework of substructuring.  Several test cases are presented with 
experimental verification, including two cases with built-in converters.                       
 
 
Introduction 
 
Reactive mufflers and packed silencers used in industry usually contain very complex 
internal components such as extended inlet/outlet tubes, thin baffles, perforated tubes, 
and bulk-reacting sound absorbing materials.  Although the interior fluid domain is 
bounded, the boundary element method (BEM) is still an ideal analysis tool due to its 
surface-only meshing scheme.  Since 1996, Wu and his co-workers [1,2] have used a 
so-called “direct mixed-body BEM” for the analysis of reactive mufflers with thin 
internal components and perforated tubes.  A key ingredient in the direct mixed-body 
BEM is the hypersingular integral equation.  The use of the hypersingular integral 
equation for thin-body scattering problems has been a well-known technique.  Back in 
1980, Terai [3] presented a regularization technique for 3-D planar (and constant) 
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elements to model acoustic scattering from thin plates. Later, Rizzo and his co-workers 
were among the pioneers to develop general regularization techniques for curvilinear 
(and higher-order) boundary elements [4-10].  The general regularization procedure for 
curvilinear elements has enabled more accurate boundary modeling for complex 
geometry.  The regularization technique was adopted in the direct mixed-body BEM to 
model thin components and perforated tubes inside reactive mufflers [1,2].  It is noted 
that the modeling of perforated tubes is similar to the modeling of thin bodies except 
that an empirical transfer impedance is introduced to relate the pressure jump to the 
normal velocity [11].  
 
For packed silencers, the BEM modeling becomes even more challenging because there 
are at least two different acoustic media involved, air and the bulk-reacting sound 
absorbing material.  A bulk-reacting sound absorbing material is characterized by a 
complex speed of sound and a complex mean density [12].  These two material 
properties are related to the propagation constant and the characteristic impedance 
which can be measured by the two-cavity method [12] or approximated by empirical 
formulas if the flow resistivity of the material is known [13].  The traditional modeling 
approach is to use the multi-domain BEM [14] in which each subdomain contains only 
one material.  However, the internal geometry of a typical packed silencer is usually 
quite complex and there may be too many subdomains intricately connected together.  
It is impractical to define so many subdomains and try to match the boundary 
conditions at all interfaces.  To overcome the modeling difficulty, Wu and his co-
workers [15,16] have recently extended the direct mixed-body BEM to packed 
silencers.  The idea is similar to the technique used for reactive mufflers.  Boundary 
integral equations for different subdomains (including those with different material 
properties) are summed up first.  Hypersingular integral equations are then added at 
interfaces to make up for any missing equations.  Because the integral equations for all 
subdomains are summed up, a multi-domain problem can now be solved in a single-
domain fashion.  There is no need to define different subdomains or artificial interfaces 
anymore.   
 
Figure 1 shows a typical packed silencer configuration that can be solved by the direct 
mixed-body BEM.  With reference to the figure, Ω denotes the interior acoustic domain 
of the silencer. The symbols R, T, P, B, I, IP, IPC, ATB, and BTB represent “Regular”, 
“Thin”, “Perforated”, “Bulk-reacting”, “Interface”, “Interface with Perforated surface”, 
“Interface with Perforated surface and Cloth”, “Air-Thin-Bulk-reacting”, and “Bulk-
reacting-Thin-Bulk-reacting” surfaces, respectively.  The R surfaces include the 
exterior silencer surfaces (with no bulk-reacting packing), the external inlet/outlet 
tubes, and the inlet/outlet ends.  The T surfaces are the thin components inside the 
silencer, such as the extended inlet/outlet tubes, thin baffles, thin flow plugs, and 
internal connecting tubes.  Note that a T surface has air on both sides of the thin 
surface.  The P surfaces are designated for perforated tubes or any perforated thin 
plates with air on both sides.  The B surfaces are the exterior boundary surfaces of the 
bulk-reacting lining.  The I surfaces are the interfaces between the bulk-reacting 
material and air.  The IP surfaces are the perforated interfaces between the bulk-
reacting material and air.  The IPC interfaces are the same as the IP interfaces except 
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that a layer of protective cloth is inserted between the perforated plate and the bulk-
reacting material to protect the bulk-reacting material from being blown out [16].  The 
ATB surfaces represent any rigid thin plates between the bulk-reacting material and air.  
The BTB surfaces represent any embedded rigid thin plates with the bulk-reacting 
material on both sides. 
 
One unique feature of all direct boundary integral formulations is that it is permissible 
to use discontinuous elements.  With discontinuous elements, a BEM model can be 
easily assembled from components without worrying about junction continuity, and the 
mesh can be automatically refined at each frequency.  Curvilinear constant elements 
have been used in the direct mixed-body BEM for muffler and silencer analysis.  A 
coarse mesh is usually used for low-frequency analysis, and the mesh is gradually 
refined by a simple algorithm as the frequency goes up.  This can save a tremendous 
amount of  CPU time as well as mesh preparation time.  It should be noted that the 
surface type naming (such as R, T, P, B, etc in Figure 1)  in the direct  mixed-body 
BEM is easy to do and does not require extra preprocessing efforts.  When a piece of 
component mesh is being assembled to the model, its surface type can be attached at 
the same time.  As the mesh is automatically refined later at higher frequencies, the 
surface type will be carried over.      
    

 
Figure 1  Types of surfaces modeled in the direct mixed-body BEM 

 It should be noted that when the direct mixed-body BEM for muffler analysis was first 
presented in 1996 [1], it was meant to eliminate the tedious multi-domain BEM zoning 
and interface matching so that a muffler model with complicated internal components 
could be created and solved quickly in a single computation.  However, as frequency 
and the number of elements increase, a large silencer model cannot be computed on a 
PC or workstation anymore mainly due to the physical limitation of available computer 
memory, and also partially due to the incredibly long CPU time it will take to finish the 
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computation.  Therefore, dividing a large silencer into smaller substructures so that 
each substructure can fit into the computer memory one at a time becomes necessary.  
The BEM first computes the impedance matrix of each substructure one by one.  Then, 
the impedance matrices for substructures are combined by a synthesis procedure to 
form the resultant impedance matrix for the whole structure [17].  It is noted that in 
reality the substructuring procedure is nothing but the multi-domain BEM implemented 
in a modular way.  This may sound like some kind of reincarnation of the old multi-
domain BEM which we have tried very hard to get rid of and replace with the direct 
mixed-body BEM.  Fortunately, the concept of the direct mixed-body BEM is not 
totally against the multi-domain BEM, though.  In a very recent implementation [18], it 
is shown that the direct mixed-body BEM actually facilitates the substructuring 
operations.  With the direct mixed-body BEM, each substructure may contain very 
complex internal components (such as thin and perforated components) as well as bulk-
reacting materials.  As a result, substructuring can be done more naturally in the 
silencer’s longitudinal direction.  The traditional multi-domain BEM rule of having to 
construct homogeneous (single-medium) and well defined (no thin or perforated 
surfaces) subdomains are no longer required.  That means substructuring can be done 
more naturally and elegantly with the help of the direct mixed-body BEM.  
 
The substructuring technique introduced in Ref. [18] may also be applied to mufflers 
and silencers with an inserted acoustic filter element such as a catalytic converter (CC) 
or a diesel particulate filters (DPF) [19]. A CC or PDF consists of a stack of capillary 
tubes inserted between two connecting ducts (substructures).  Monoliths used in a CC 
are categorized as through-flow monoliths in which the substrate is made up by a large 
number of small parallel tubes (or cells) allowing exhaust gas to flow from one end to 
the other. The substrate is coated with a layer of wash coat material and catalyst to 
enhance the catalytic function. As the exhaust gas flows through the catalyst, gaseous 
pollutants such as nitrous oxide (NOx), carbon monoxide (CO), hydrocarbons (HC)  
are converted into less harmful gases. Monoliths used in DPF are known as wall-flow 
monoliths in which exhaust gas is forced to flow through porous tube walls. The 
removal of soot particles is accomplished by the filtration process in which the wall 
pores filter out the particulate.  Figure 2 shows the comparison between a CC and a 
DPF. 
 
To model a CC, a four-pole transfer matrix can be used to represent the connection 
between the two connecting substructures (one before the CC and one after).  As will 
be shown in this paper, the transfer matrix is a diagonal matrix with an appropriate set 
of four-pole parameters derived from the one-dimensional plane-wave theory.  The 
characteristic impedance and the propagation constant of the converter can be 
measured by the two-cavity method.  The diagonal matrix actually represents an 
“element-to-element” connection between the two connecting substructures separated 
by the CC.  Compared to the CC, the DPF is harder to model due to its wall-flow 
nature.  Rigorously speaking, the one-dimensional plane-wave theory is actually not 
valid inside the DPF because of the alternate plugs at the inlet and outlet ends.  
Nevertheless, if we assume that sound waves will penetrate only the neighboring 
capillary tubes and quickly get out from there due to the least resistance, then the 1-D 
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“element-to-element” four-pole connection may still be a good approximation for the 
DPF. 

    Figure 2  Emission control device with (A) a through-flow catalyst converter (CC), 
(B) a wall-flow diesel particulate filter (DPF). 

 
In this paper, we first present the boundary integral equations for the direct mixed-body 
BEM followed by the impedance matrix synthesis used in the substructuring BEM.  
The connection between two neighboring substructures can be either a four-pole 
transfer matrix (for a CC or DPF) or simply an identity matrix (for direct connection).  
Several test cases including two with an inserted CC/DPF are presented to demonstrate 
the substructuring technique.  Numerical results are compared to experimental 
measurements. 
 
Direct Mixed-Body BEM   
 
The governing differential equations for a two-medium acoustic problem as depicted in 
Figure 1 are 
 
 022 =+∇ pkp A            in air (1) 
 
 022 =+∇ pkp B           in the bulk-reacting material (2) 
 
where p  is the sound pressure, and Ak  and Bk  are the wavenumbers in air and the 
bulk-reacting material, respectively.  The corresponding fundamental solutions are 
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 Aψ =  
r

e rik A−

 (3) 

 Bψ =  
r

e rikB−

 (4) 

where 1−=i  and r is the distance between the collocation point P and any surface 
point Q. 
 

Let ω  be the angular frequency, Aρ , Bρ , Ac , and Bc be the mean density and speed 
of sound of air and the bulk-reacting material, respectively.  Let n be the unit normal 
vector. The normal vector on the R or B boundary is pointing into the interior acoustic 
domain, and on the I, IP, IPC, and ATB interfaces the normal vector is pointing into the 
air side. On T, P, and BTB, the normal vector can be pointing into either side; the side 
into which the normal is pointing is called the positive side, and the corresponding 
pressure is denoted by +p .  The other side of T, P. or BTB is called the negative side 

and the pressure there is denoted by −p .  Without going through the derivation details, 
the complete boundary integral equations are given in the following [15,16,18]:  
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where ξ  is the dimensionless transfer impedance for perforated tubes or perforated 

surfaces [11], and *ξ  is the dimensionless transfer impedance for IP or IPC interfaces.  

On an IP interface, *ξ  is identical toξ .  On an IPC interface, *ξ  is the sum of ξ  and 
the dimensionless transfer impedance of the protective cloth [16].   
 
Substructuring Using the Impedance Matrix Synthesis (IMS) 
 
To begin with, we assume that a silencer is divided into two substructures as shown in 
Fig. 3.   It is possible that the two substructures are connected to each other by a built-
in acoustic filter element represented by the dotted lines in Fig. 3.   Let pi and vi denote 
the sound pressure and the particle velocity in the longitudinal direction, respectively, 
at the inlet of the first substructure, and po and vo denote the corresponding variables at 
the outlet of the second substructure.  Also, p1 and v1 are the variables at the outlet of 
the first substructure, and p2 and v2 are at the inlet of the second substructure.  It should 
be noted that sound pressure and particle velocity may not be uniform at any cross 
section.  Therefore, each p and v variable used in this section actually represents a 
vector.  The length of each vector depends on the number of elements used at each 
cross section. 
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For substructure 1, the sound pressures at the inlet and the outlet are related to the 
corresponding particle velocities by an impedance matrix 
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Figure 3  Two substructures connected by an acoustic filter element. 

 
It is important to note that the linear relationship of the above equation is true only 
when the rest of the boundary of substructure 1 is either rigid or just has an impedance 
boundary condition.  To obtain the impedance matrix, one will need to run the BEM on 
substructure 1 with a multiple of velocity boundary conditions.  For example, to obtain 
the first column of the impedance matrix, v=1 is applied to the first element at the inlet 
of substructure 1, and v=0 is applied elsewhere.  The sound pressure solutions at the 
inlet and outlet will become the first column of the impedance matrix.  Similarly, by 
making v=1 on each element at the inlet and outlet one at a time, the whole impedance 
can be obtained.  It seems that to obtain the complete impedance matrix of Eq. (7) one 
would have to run the BEM on the substructure for a multiple of times, with a different 
velocity boundary condition each time.  However, it should be noted that only one 
BEM matrix needs to be formed and decomposed at each frequency. The vectors on the 
right-hand side of the matrix corresponding to different velocity boundary conditions 
can be generated at the same time, and each different right-hand side vector only 
requires a trivial back substitution. 
 
Similarly, one can create the impedance matrix for substructure 2.  The impedance 
matrix relationship is 
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For the acoustic filter element that connects the two substructures, a four-pole transfer 
matrix is used to describe the acoustic property of the filter element.  That is,   
 

pi, vi po, vo p1 
v1 

p2 
v2 

Substructure 1        Substructure 2 Acoustic filter element 
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Note that for a through-flow type catalytic monolith, each capillary tube can be 
assumed to have a rigid wall.  Since the diameter of each capillary tube is small, a 
plane-wave motion that consists of a forward traveling wave and a backward reflective 
wave is sufficient to describe the behavior in each capillary tube.  Due to the rigid-wall 
assumption, there is no interaction between any two tubes.  Under such circumstances, 
the transfer matrix coefficients A, B, C, and D are each a diagonal matrix.  In other 
words, 
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where A1, B1, C1, and D1 are the four-pole parameters of a straight tube.  With the 
diagonal matrices in Eq. (10), Eq. (9) actually represents an “element-to-element” 
connection between the two substructures.  To account for resistance and friction loss, 
the four-pole parameters are expressed in terms of a complex mean density *ρ and a 

complex speed of sound *c .  Both material properties can be measured by the two-
cavity method on a sample of CC or DPF with the same length (as in real applications).  
The four-pole parameters for a straight tube are 
 
 LkA *

1 cos=  (11a) 

 LkciB ***
1 sinρ=  (11b) 

 Lk
c
iC *

**1 sin
ρ

=  (11c) 

 LkD *
1 cos=  (11d) 

 
where the complex wavenumber ** / ck ω=  and L is the length of the CC or DPF. 
  
It should be noted that when the two substructures are in direct contact (without the 
acoustic filter element in between), the transfer matrix reduces to the identity matrix.  
In other words, A=D=I and B=C=0, where I is the identity matrix.       
 
The interface variables, p1, v1, p2, and v2, can be eliminated from Eqs. (7)-(9) so that pi 
and vi are directly related to po and vo.  The result is 
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Note that sound pressure and particle velocity are usually uniform across any cross 
section in the inlet tube and in the outlet tube as well.  That means each of the vectors 
pi, vi, po, and vo can be lumped into one single variable, and the impedance matrix in 
Eq. (12) can be further reduced to a 4x4 impedance matrix.  With the lumped 4x4 
impedance matrix ready, the TL of the silencer can be easily obtained [2].     
 
As mentioned earlier, when the two substructures are in direct contact, A=D=I and 
B=C=0.  Equation (14) reduces to  
 

2231 ZZK −=  (15) 
 

and Eqs. (13a-d) become 
 

21
1

2231121151 )( ZZZZZZ −−+=  (16a) 

32
1

22311252 )( ZZZZZ −−−=  (16b) 

21
1

22314161 )( ZZZZZ −−=  (16c) 

32
1

2231414262 )( ZZZZZZ −−−=  (16d) 
 
If a silencer is divided into multiple substructures (more than two) in series connection, 
the impedance matrix synthesis can be first applied to the first two substructures to 
produce a resulting impedance matrix.  Then the resulting impedance matrix is 
combined with the impedance matrix of the third substructure by the same synthesis 
method.  The procedure is repeated until the last substructure is reached.  It is noticed 
that many packed silencers in practical use may have an identical cross section in a 
large portion of the silencer structure.  For those kinds of silencers, the impedance 
matrix of a small section of the identical geometry can be used as a “template”, which 
can be repeatedly used in the synthesis procedure. 
 
 
Test Cases 
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The first test case is a parallel-baffle silencer [18] as shown in Fig. 4.  Both the inlet 
and the outlet tubes have a diameter of 5”. The two transition ducts that connect the 
inlet/outlet tubes to the parallel-baffle section have a square cross section of varying 
dimensions.   

 
Figure 4b shows the cross section of the parallel-baffle section. Two 4”x24”x36” 
Polyester parallel baffles are used as center splitters in a 24”x24”x36” rectangular duct, 
and two 2”x24”x36” baffles are attached to the two side walls, respectively, as linings.  
This creates three 4” air gaps in the center.  As shown in Fig. 4c, each Polyester splitter 
is covered by a perforated metal sheet (designated as IP surface) on its sides and a rigid 
plate (designated as ATB surface) at both ends.  The porosity of the IP interfaces is 
23%.   
 
Since the model has two planes of symmetry, only a quarter of the silencer geometry 
has to be modeled.  Even so, the whole model still cannot fit in a PC with 1GB memory 
at high frequencies without dividing the silencer into smaller substructures.  It is 
noticed the parallel-baffle section has an identical cross section over its length except at 
the two ATB ends (covering plates).  Thus, a template as shown in Fig. 5 can be 
created and its impedance matrix, once computed for each frequency, can be repeatedly 
used in the synthesis procedure.  Figure 6 shows the comparison of the BEM 
predictions using four and ten substructures and the experimental TL curve.  It is seen 
that the BEM results compare fairly well with the measured TL curve, although some 
small discrepancies do exist between models with different number of substructures. 
 
The second test case is a catalytic converter (CC) consisting of a ceramic monolith as 
shown in Fig. 7 [19]. The catalytic monolith is made up of capillaries with square 
cross-sections and has a cell density of 400 cells per square inch (CPSI). The monolith 
used in this study is uncoated. A circular substrate sample is cored out from the 
catalytic monolith in full length for measuring its characteristic impedance and 
propagation constant using the two-cavity method.  There are two ways to make BEM 
predictions.  One is to directly model the CC as a block of  homogeneous and isotropic 
bulk-reacting material (BRM), and the other is to model the CC by the “element-to-
element” four-pole transfer matrix as described in the impedance matrix synthesis 
(IMS) section of this paper.  As shown in Fig. 8, both BEM predictions compare 
reasonably well with the experimental data. Both numerical approaches produce very 
similar results. The IMS approach, however, generates numerical results much faster 
than the direct BRM modeling method.  Since it is assumed that the acoustic 
propagation in the catalytic monolith is predominantly one-dimensional, a simple four-
pole transfer matrix would be adequate to represent the catalytic monolith. The 
predicted TL curve for an empty housing without the catalytic monolith is also plotted 
in the same graph for comparison.  The results reveal that the first two domes of the TL 
curves are the reactive effect caused by wave reflections due to area changes in the 
housing.  Beyond the first two domes, the noise attenuation is dominated by the 
dissipative effect inside the capillaries of the monolith.  The catalytic monolith 
increases the overall TL by more than 5 dB except for the first dome. 
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(a) exterior geometry (dimensions in inches) 
 
 

 
 
 

(b) cross section of the parallel baffles (c) splitter geometry 
 

 
Figure 4     Parallel-baffle silencer with a lining on both side walls. 

 
Using the same test configuration, the catalytic monolith is replaced by a ceramic wall-
flow filter monolith (a DPF) in the third test case [19]. The DPF monolith has a cell 
density of 100 CPSI and is also uncoated. Figure 9 shows the BEM predictions versus 
the experimental data. It can be seen that both numerical approaches under-predict the 
TL values though the trend of the curves agrees well with the experimental results. The 
discrepancy is due to the fact that sound propagation in the wall-flow monolith is not 
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limited to only the axial direction along the capillaries. There is significant amount of 
sound transmission through the walls of the filter monolith. 

                   
   Figure 5 A substructure template created from the identical center portion of the 

parallel-baffle silencer in Fig. 4. 
 
Conclusions 
 
Recent developments of the direct mixed-body BEM for muffler and silencer analysis 
are reviewed.  A key ingredient in the direct mixed-body BEM is the hypersingular 
integral equation.  It is well known that the hypersingular integral equation is ideally 
suited to thin-body problems so that a multi-domain approach can be avoided.  The 
direct mixed-body BEM has demonstrated that even a two-medium or multi-medium 
problem can benefit from the hypersingular integral equation. 
 
Ironically, the direct mixed-body BEM, originally meant to the “terminator” of the old 
multi-domain BEM, has turned out to be a “facilitator” of the new substructuring 
technique which is basically a modular implementation of the old multi-domain BEM.  
For large structures, the combined technique of the direct mixed-body BEM and 
substructuring has proven to be very effective. 
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This paper also presents two examples of mufflers with an emission control device 
such as a CC or DPF.  Although the proposed four-pole matrix is very effective for the 
CC test case, it only provides an approximation for the DPF test case.  More research is 
in order for the modeling of a DPF in the future. 
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    Figure 6 Transmission loss for the parallel-baffle silencer. Solid line: experiment; 

solid dots: BEM using four substructures; dotted line: BEM using ten 
substructures. 

 
 

T. W. Wu / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 218-235 (2003)

231



 
Figure 7  Emission control device test case (dimensions in inches). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 8  Comparison of the predicted and measured TL of the CC test case. 
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Figure 9   Comparison of the predicted and measured TL of the DPF test case. 
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