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Abstract

This paper discusses a three dimensional implementation of boundary integral
equation method (BIEM) for large scale time domain elastodynamic problems
and its application to ultrasonic nondestructive evaluation (NDE). We improve
the time integration algorithm of the BIEM in order to reduce the required com-
putational time. We show the efficiency of the proposed method by applying it
to a simple wave scattering problem and to a more realistic crack determination
problem related to ultrasonic NDE.

1 Introduction

The present authors[1, 2, 3] have been investigating an inverse problem of deter-
mining the position and the shape of unknown cracks in a material using the real
waveform data of the ultrasound measured with a laser interferometer. In the
numerical analysis of this inverse problem, one solves direct problems for some
candidate cracks using the time domain elastodynamic BIEM in 3D. It is readily
seen that the size of such problems become quite large if one wishes to determine
the crack geometry accurately. Indeed, the dominant wavelength of the incident
wave is usually taken comparable to or smaller than the crack size, while one will
have to take a few boundary elements per wavelength. If the linear dimension of
the analysis domain is taken to be, say, 10 times the size of the crack, one will
easily have a large scale problem with several thousands of boundary elements.
Moreover, one will also need to choose a small time increment so as to be compat-
ible with the boundary element size. Hence the number of time steps will also be
quite large.

Since the publication of the early attempt by Friedman and Shaw [4, 5], how-
ever, one seldom sees applications of the time domain BIEMs to large prob-
lems. This was also the case in many subsequent works including those for non-
mechanical applications. See [6, 7, 8, 9, 10, 11, 12] for example.

One of the reasons that the time domain BIEM has not been applied to large
scale problems is that the solution is expressed in the form of the convolution with
respect to time. This means that one has to evaluate the influence from all the
past in order to obtain the solution at a certain time. Hence the computational
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time as well as memory requirements for solving a large scale problem become
prohibitive.

In order to fix this drawback, Demirel and Wang[13] proposed a truncation al-
gorithm in two dimensional transient wave propagation problems, where the time
integration is truncated and the influence of the far past time is neglected. They
showed that the computational time is reduced to one half of the original with this
improved algorithm. Walker et al.[14, 15, 16] proposed an approximate BIEM in
three dimensional electromagnetics, where the electromagnetic field whose mag-
nitude is below a certain threshold is neglected. They also proposed a ‘project
forward’ method of evaluating the influence from the past, where they compute
the influence of the current solutions to the future field at the current time. With
these methods they estimate that the computational time scales with the fourth
to third power of the frequency instead of the conventional fifth power in the wave
equation in 3D. However, the size of the problems considered in these investiga-
tions are not as large as to disallow the in core storage of all the relevant influence
coefficients of the discretized BIE. In many practical problems including ours in
NDE, however, the memory of ordinary computer is not enough to store all the
influence coefficients.

There is another possibility of dealing with large scale problems in time do-
main with BIEM. Indeed, the use of fast multipole and related methods in the
time domain BIEM for the wave equation is possible, as has been investigated by
Michielssen and his group [17]. The elastodynamic counterpart of this approach
is also possible as one founds in Takahashi et al.[18] However, these approaches
are still in their incipient stage of developments, and the algorithms remain quite
complicated.

In view of these, we restrict our attention to the conventional BIEM in this
paper and consider large scale problems in three dimensional elastodynamics in
time domain where one cannot store all influence coefficients for all the relevant
time differences. In order to carry out the analysis within a reasonable amount of
computational time, we improve the time integration algorithm in two respects.
One is related to the improvement of the algorithm for the convolution with re-
spect to time and the other is concerned with the time interpolation function. In
Section 2, we discuss these two improvements in addition to further enhancement
of the efficiency of the the improved BIEM with the help of the parallelization (see
[19, 20] for related developments). After solving a small test problem, we proceed
to the solution of a practical large scale elastodynamic problem related to ultra-
sonic NDE using the parallel version of the improved BIEM. We show that the
proposed approach is promising in inverse problems of determining the geometry
of an unknown surface crack using real data.
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2 Improved algorithms for three dimensional time
domain BIEM for elastodynamics

2.1 Time domain BIE for three dimensional elastodynamics

The scattering of the elastic wave by a traction free crack S in a 3 dimensional
elastic region D is considered. The unknown displacement u is obtained as the
solution to the following initial boundary value problem:

µ∆u + (λ + µ)∇∇ · u = ρü in D \ S × (t > 0), (1)
Tu = t on ∂D × (t > 0),
u|t=0 = u̇|t=0 = 0 in D,

Tu± = 0 on S × (t ≥ 0),
ϕ = u+ − u− = 0 on ∂S,

where λ and µ are Lamé’s constants, ρ is the density, T is the traction operator,
the superposed +(−) is the limit of a certain quantity on the crack S from the
positive (negative) side, with the positive side indicating the one into which the
unit normal vector n points, ϕ is the crack opening displacement, and ˙( ) indicates
the differentiation with respect to time.

The boundary integral equations corresponding to equation (1) are written as

1
2
u(x, t) =

∫

∂D

Γ(x, y, t) ∗ Tu(y, t)dS − v.p.
∫

∂D

ΓI(x, y, t) ∗ u(y, t)dS

+
∫

S

ΓI(x, y, t) ∗ ϕ(y, t)dS x ∈ ∂D, (2)

0 =
∫

∂D

TΓ(x, y, t) ∗ Tu(y, t)dS −
∫

∂D

TΓI(x,y, t) ∗ u(y, t)dS

+ p.f.
∫

S

TΓI(x,y, t) ∗ ϕ(y, t)dS x ∈ S, (3)

where Γ(x, y, t) and ΓI(x, y, t) are the fundamental solution and the double layer
kernel of three dimensional elastodynamics, ‘∗’ indicates the convolution with re-
spect to time, v.p. stands for the Cauchy’s principal value of a singular integral,
and p.f. denotes the finite part of a divergent integral, respectively.

2.2 Conventional time domain BIEM

The integral equations in (2) and (3) are discretized with the temporal and spa-
tial interpolation functions M `(τ) and Nq(y), respectively. For the case of the
Neumann boundary condition, they reduce to the following algebraic equation:

∑
q

Apq
ij (∆t)

[
uj(xq, n∆t)
−ϕj(xq, n∆t)

]
+

[ 1
2ui(xp, n∆t)

0

]
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= bi(xp, n∆t)−
∑

q

n−1∑

`=1

Apq
ij ((n + 1− `)∆t)

[
uj(xq, `∆t)
−ϕj(xq, `∆t)

]
. (4)

In this formula, the matrix Apq
ij and vector bi are defined by

Apq
ij (`∆t) =

∫

∂D+S

∫
ΓIij(xp,y, τ)M `(τ)Nq(y)dτdSy,

bi(xp, n∆t) =
∑

q

n∑

`=1

(Tu)j(xq, `∆t)

∫

∂D

∫
Γij(xp,y, τ)Mn+1−`(τ)Nq(y)dτdSy,

if the collocation point xp is on ∂D, and by

Apq
ij (`∆t) =

∫

∂D+S

∫
(TΓI)ij(xp, y, τ)M `(τ)Nq(y)dτdSy,

bi(xp, n∆t) =
∑

q

n∑

`=1

(Tu)j(xq, `∆t)

∫

∂D

∫
(TΓ)ij(xp,y, τ)Mn+1−`(τ)Nq(y)dτdSy.

if xp is on S. In the sequel, we shall call (4) the ‘algebraic equation at t = n∆t’.
The equation (4) shows that the influence coefficients Apq

ij (`∆t) (` = 1, · · ·n)
are required when one computes the solution ui(xp, n∆t) and ϕi(xp, n∆t). In
BIEM for wave problems in time domain, the influence coefficient matrix is sparse
because the influence coefficients vanish if xp is in the region not reached by
the wave from the source within a certain time interval. Therefore, one has to
compute and store only the non zero influence coefficients Apq

ij (n∆t) at each time
step t = n∆t (n = 1, · · · , Nt) in order to save memory, where Nt is the number of
the time steps. As regards the influence coefficients Apq

ij (`∆t) for ` = 1, · · ·n− 1,
they have already been calculated and stored at a former time step and we simply
recall them from the memory. We can thus write the algebraic equation at t = n∆t
by computing the matrix vector products on the RHS of equation (4).

If all the influence coefficients up to the time step Nt can be stored, one may
then compute the influence coefficient matrix with a given time difference only
once at each time step. Since the computation of the influence coefficient matrix
is dominant in the whole algorithm of BIEM in time domain, the computational
time required for a BIE analysis is considered to scale as O(Nt). In the case of
large scale problems with a large number of boundary elements or time steps,
however, one may not necessarily have enough memory to store all the influence
coefficients. Suppose that one can store the influence coefficients Apq

ij (`∆t) for
only ` = 1, · · ·Nm for some Nm smaller than Nt. With a naive approach one
recalculates the influence coefficient Apq

ij (`∆t) for ` = Nm + 1, · · ·n at t = n∆t
(n = Nm+1, · · · , Nt) in order to construct the algebraic equation in (4) at t = n∆t
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(n > Nm). This method will be referred to as the conventional BIEM in the sequel.
One will then have to call the routine for the calculation of the influence coefficients
once at time steps which satisfy t ≤ Nm∆t, and n−Nm times at t ≥ (Nm +1)∆t.

Therefore the routine will be evoked
(Nt −Nm)(Nt −Nm + 1)

2
+Nm times in total.

In large scale problems, Nm is often far less than Nt. Therefore, the computational
time will scale as O(Nt

2) which is quite prohibitive (Figure 1).
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Figure 1: Evocation of the subroutine for the influence coefficients in the conven-
tional time domain BIEM with insufficient memory (Apq

ij (n∆t) (n = 1 · · ·Nm) are
stored).

In the next section we shall investigate some improvements of the algorithm in
order to carry out a large scale time domain BIE analysis within an appropriate
amount of computational time.

2.3 Improvements of the algorithm for time domain BIEM

2.3.1 Improvement of the algorithm for the time convolution

To solve a large scale three dimensional elastodynamic problem within an appro-
priate amount of time, we improve the algorithm for the time convolution and
attempt to reduce the number of the recalculation of the influence coefficients.

In the conventional BIEM, the influence coefficients Apq
ij (n∆t) are calculated

and stored at the time t = n∆t, and are reused at t = `∆t (` = n, · · · , Nt)
for the evaluation of the matrix vector products Apq

ij (n∆t)uj(xq, (` + 1 − n)∆t)
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and Apq
ij (n∆t)ϕj(xq, (` + 1− n)∆t), which are added to the RHS of the algebraic

equation at t = `∆t (` = n, · · · , Nt). (In the sequel, we shall suppress the terms
including uj for the purpose of simplicity.)

In the proposed implementation, however, we do the following. At t = n∆t, the
solutions ϕj(xq, `∆t) for ` = 1, · · · , n−1 are already known. It is therefore possible
to compute the matrix vector products Apq

ij (n∆t)ϕj(xq, `∆t) for ` = 1, · · · ,min(n−
1, Nt + 1−n) at t = n∆t. The results are then added to the RHS of the algebraic
equation at t = (` + n − 1)∆t. This approach is similar to the ‘project forward’
technique proposed by Walker et al.[14, 15, 16]. With this idea, the influence
coefficient matrix Apq

ij (n∆t) (n = [Nt+3
2 ] · · · , Nt) (where [a] is the Gauss’ symbol)

is calculated only once at t = n∆t and there is no need to store it. In other
words, only the influence coefficient matrix Apq

ij (n∆t) for n = 1, · · · , [Nt+1
2 ] will be

reused. Therefore, one can store all the reusable influence coefficient matrices if
Nm ≥ [Nt+1

2 ] holds.
But Nm is often smaller than [Nt+1

2 ] in large scale problems. In such cases, we
propose to construct the algebraic equations as in the following:

1. For n = 1, · · · , Nm, Apq
ij (n∆t) is calculated and stored at the time t = n∆t.

The terms including Apq
ij (`∆t) for ` = 1, · · · , Nm in the RHS of the algebraic

equation at t = n∆t are computed as in the conventional approach.

2. Apq
ij (n∆t) for n = Nm + 1, · · · , [Nt+1

2 ] are required in the matrix vector
products with ϕj(xq, `∆t) for 1 ≤ ` ≤ Nt +1−n: these products are needed
in the computation of the RHS for t = (` + n − 1)∆t. However, one can
compute only the matrix vector products of the form Apq

ij (n∆t)ϕj(xq, `∆t)
for 1 ≤ ` ≤ n − 1 at t = n∆t, since ϕj(xq, `∆t) for other `s are unknown.
Therefore, we recalculate Apq

ij (n∆t) at time steps given by t = {k(n − 1) +
1}∆t where k is a natural number such that k(n−1)+1 ≤ Nt holds. We then
multiply ϕj(xq, `∆t) for (k − 1)(n− 1) + 1 ≤ ` ≤ min(k(n− 1), Nt + 1− n)
by Apq

ij (n∆t) and add the results to the RHS of the algebraic equation at
t = (` + n− 1)∆t. The routine for the influence coefficient matrix Apq

ij (n∆t)
(n = Nm + 1, · · · , [Nt+1

2 ]) is called [Nt−1
n−1 ] times in total.

3. For n = [Nt+3
2 ], · · · , Nt, Apq

ij (n∆t) is calculated once for all and multiplied
by ϕj(xq, `∆t) (1 ≤ ` ≤ min(n − 1, Nt + 1 − n)) at t = n∆t. Such Apq

ij are
never stored. The results of the matrix vector products are added to the
algebraic equation at t = (` + n− 1)∆t.

In this method, the number of calls of the routine for the influence coefficient

matrix is Nm +
[
Nt

2

]
+

[
Nt+1

2 ]∑

`=Nm+1

[
Nt − 1
`− 1

]
in total (Figure 2). This number is

much less then the corresponding number of evocation in the conventional version.
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Figure 2: Evocation of the subroutine for the influence coefficients in the improved
time domain BIEM.

As an example we consider a time domain elastodynamic problem with Nt =
10. If the influence coefficient matrix Apq

ij (n∆t) for n = 1, · · · , 3 can be stored, the
number of times that the routine for the influence coefficient matrix is called is 31
with the conventional time domain BIEM as shown in Figure 1. This number is
reduced to 13 with the proposed method as seen in Figure 2.

2.3.2 Improvement of the algorithm for the time interpolation function

Next we focus our attention on the algorithm for the time interpolation function
used in the discretization of the boundary integral equation. In this paper, we
consider piecewise linear time interpolation functions.

The piecewise linear time interpolation function Mn(t) defined by

Mn(t) =





t− (n− 2)∆t

∆t
(n− 2)∆t ≤ t < (n− 1)∆t,

n∆t− t

∆t
(n− 1)∆t ≤ t < n∆t,

0 t < (n− 2)∆t, t ≥ n∆t,
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is rewritten in the following form:

Mn(t) = Mtri
n(t)− 2Mtri

n−1(t) + Mtri
n−2(t). (5)

with the help of the function Mn
tri(t) defined by

Mn
tri(t) =





n∆t− t

∆t
t < n∆t

0 otherwise

See Figure 3.
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Figure 3: Decomposition of Mn(t)

With equation (5), one rewrites the influence coefficient Apq
ij (n∆t) in the fol-

lowing form:

Apq
ij (n∆t) = Atri

pq
ij (n∆t)− 2Atri

pq
ij ((n− 1)∆t) + Atri

pq
ij ((n− 2)∆t), (6)

where

Atri
pq
ij (n∆t) =

∫

∂D+S

∫
ΓIij(xp, y, τ)Mtri

n(τ)Nq(y)dτdSy xp ∈ ∂D,

Atri
pq
ij (n∆t) =

∫

∂D+S

∫
(TΓI)ij(xp,y, τ)Mtri

n(τ)Nq(y)dτdSy xp ∈ S.

Obviously, it is more expensive to calculate the three integrals on the RHS
of equation (6) at t = n∆t, compute Apq

ij (n∆t) from equation (6) and store the
result in the memory than to calculate and store just Atri

pq
ij (n∆t) at t = n∆t

to obtain Apq
ij (n∆t), using Atri

pq
ij ((n − 1)∆t) and Atri

pq
ij ((n − 2)∆t) obtained in

previous time steps. We therefore calculate and store Atri
pq
ij (n∆t), rather than

Apq
ij (n∆t), at t = n∆t. With this method the time required for the integration at

each time step is expected to be reduced to one third of the corresponding time
using Apq

ij (n∆t) instead. The additional cost one has to pay with this approach is
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that one has to perform the matrix vector product operation three times since the
required product Apq

ij (n∆t)ϕj(xq, `∆t) is decomposed as follows:

Apq
ij (n∆t)ϕj(xq, `∆t) = Atri

pq
ij (n∆t)ϕj(xq, `∆t)

− 2Atri
pq
ij ((n− 1)∆t)ϕj(xq, `∆t)

+ Atri
pq
ij ((n− 2)∆t)ϕj(xq, `∆t).

Notice that the three terms on the RHS of the above equation are evaluated at
different time steps, i.e. t = n∆t, t = (n − 1)∆t and t = (n − 2)∆t, respectively.
Therefore the improvement of the computational time achieved with the proposed
method is expected to be less than three times of the original.

2.3.3 Parallelization

We seek further enhancement of the efficiency of the code by parallelizing the
algorithm.

The parallelization strategy used in this paper is a rather standard one which
can be described as follows: Since the matrix equation to be solved is a sparse
one, the solution process itself is relatively light in terms of the computational
load, and can be performed with only one process called ‘master’. In this paper
we use GMRES as the solver. The most significant computational load is actually
found in the evaluation of the RHS which takes the form of the sum of matrix-
vector products. In the present implementation we distribute boundary elements
to processes, and each process computes influence coefficients of elements known to
the process for all the collocation points. In other words the influence coefficients
Apq

ij (·, n∆t) are distributed column-wise to processes. The contributions to the
RHS from each of the processes are then sent to the master process and summed.

In distributing boundary elements to processes one has to take the load balanc-
ing into consideration. This is particularly so because we are interested in a time
domain BIEM where some of the matrices are sparse. In BIEM, however, one can
distribute boundary elements quite freely to processes, thus making it relatively
easy to achieve good load balancing. This is in contrast to FEM or FDM where one
usually uses domain decomposition to distribute unknowns to processes. In the
present implementation, we number boundary elements in a systematic manner
(e.g. in a spiral manner for a penny shaped crack) and then distribute boundary
elements to processes in a cyclic manner. The cyclic distribution has an effect of
making the distribution of boundary elements in processes rather ‘uniform’ and
thus helps to achieve a good load balancing.

2.4 Numerical example

2.4.1 Scattering of P wave by a penny shaped crack

To examine the improvement of the efficiency achieved by the modifications pro-
posed in the previous section, we solve a simple scattering problem for a crack S
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in a three dimensional infinite elastic region D. We solve this problem with the
improved and the conventional methods and compare the performance.

The crack is assumed to be penny shaped with the radius of a, and the incident
wave is a plane P wave propagating into the direction normal to the crack (taken to
be the x3 direction) and having a constant stress magnitude of σ33 = p (Figure 4).
The number of the boundary elements is 2680 (8040 DOF), the number of time
steps Nt is 30 and the Poisson ratio ν is 0.25. Also, the time increment ∆t is set
equal to 0.09a/cT , where cT is the velocity of the S wave. The computation is
carried out with a cluster of 4 SMP PCs having 2 Compaq Alpha EV67 (666MHz)
as CPUs and 512MB of RAM. The PCs are connected with a Myrinet network.
We use MPICH to run parallel codes implemented with MPI[21].

D

S

u
���

Figure 4: Wave scattering problem by a penny shaped crack S.

Figure 5 shows the time history of the x3 component of the crack opening dis-
placement for t ≤ 11∆t. The results agree well with those obtained by Hirose and
Achenbach[22]. Table 1 shows the comparison of computational time(sec) required
by conventional and improved methods. In this case Nm is 7 with the sequential
code. The conventional method requires the wall time of 26764 seconds, which

Table 1: Computational time (sec).
# CUP wall time(sec.)

conventional BIEM 1 26764
improved BIEM 1 1877

improved parallel BIEM 8 188

is reduced to 1877 seconds with the algorithm improvement. This result shows
that the efficiency of the improved approach is remarkable. Also noteworthy is
the superlinear reduction of the computational time achieved by the paralleliza-
tion. This superlinearity is partly due to the fact that one can increase Nm in
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Figure 5: Opening displacement of the crack S.

the parallel code simply because more memory is available. Indeed, Nm has been
increased to 15 in the 8 process case. This superlinearity is more evidently seen
in Figure 6 in which the wall time × the number of processes (Nprocs) is plotted
vs Nprocs. We could thus reduce the computational time to 1/142 of the original
with the algorithm improvements and parallelization.

3 Application to large scale elastodynamic prob-
lems related to ultrasonic NDE

In this section we apply the improved parallel code to the analysis of the real
waveform data obtained in an ultrasonic NDE.

In the ultrasonic testing under consideration (See Figure 7), we set an ultrasonic
transducer (central frequency = 500 KHz, diameter = 14.5mm) on the surface of
the specimen made of aluminum alloy which has a rectangular surface crack S,
which actually is a saw cut having an opening of 0.2mm. The location and the
length (=10.5mm) of the crack are known since it is visible on the surface of
the specimen, but the depth and the angle of inclination of S are unknown. To
determine these quantities, we excite the transducer with an electric pulser, thus
generating an incident wave which illuminates the crack. We then use a laser
interferometer to measure the normal velocities at several points on the surface
(Li, Ri shown in Figure 7). The depth and the angle of inclination of the surface
crack are determined from the velocimetry data.

In this NDE problem, we have to determine the elastic wave generated from
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Figure 7: Specimen and the points of measurements.

H. Yoshikawa and N. Nishimura / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 201-217 (2003)

212



the transducer, which is unknown. To determine this wave, we model the action of
the transducer as the time varying load p distributed under the transducer. As we
found[3], however, the spatial distribution of p is rather uniform, and a relatively
simple modeling for the behavior of p is permissible. We thus model the action
of the transducer by two uniform loads denoted by p1, p2. These equivalent loads
pj (j = 1, 2) are applied on the surface area denoted by ∂Dtj

, where ∂Dt1 is the
circular area having the radius of three eighths of the radius of the transducer and
∂Dt2 is the rest of the area under the transducer, respectively. We determine the
time variations of these loads using the laser velocimetry data obtained at points,
denoted by Li (i = 1, . . . , N), where the observed velocities are not affected by
the scattered waves from the crack. Indeed, pj(t) (j = 1, 2) can be obtained as
solutions to a system of integral equations given by[3]

V i
L(t) =

2∑

j=1

∫ t

0

ki
j(t− s)ṗj(s)ds, (i = 1, . . . , N) (7)

where ki
j(t) is the normal displacement at the point Li produced by the uniform

load having a Dirac delta time variation distributed on ∂Dtj , V i
L(t) is the normal

velocity at Li obtained with laser velocimetry, and N is the number of experiments.
The function ki

j can be computed numerically as one integrates the well-known
point load solution by Lamb. The integral equation in (7) can be solved numeri-
cally with the help of Tikhonov’s regularization and the L-curve[3]. Figure 8 shows
the reconstructed ṗj used in the present investigation. The elastic wave from the
transducer is now reconstructed as one solves a direct elastodynamic problem with
the equivalent loads as the boundary condition.

We next solve the inverse problem of determining the depth and the angle of
inclination of the crack. To this end we introduce shape parameters d and θ which
indicate the depth and the angle of inclination of the crack, respectively. We then
solve the following initial boundary value problem via the improved time domain
BIEM using the reconstructed ṗj as part of the boundary conditions:

µvi,kk + (λ + µ)vk,ik = ρv̈i in D × (t > 0)
(Tv)i = −ṗj(t)ni on ∂Dtj × (t > 0)
(Tv)i = 0 on (∂D \ ∂Dtj )× (t ≥ 0),

(Tv)±i = 0 on S × (t ≥ 0)
vi|t=0 = v̇i|t=0 = 0 in D

ϕ̇i = v+
i − v−i = 0 on ∂S,

where D is the domain of the specimen with the crack which is described with
shape parameters (d, θ), ∂D is the boundary of the domain D, and n is the unit
normal vector to ∂D. Obviously, the solution vi to this problem is a function of
(d, θ). We then introduce the cost function J defined by

J =
∑

i

∑
m

(V i(m∆t)− vi(d, θ,m∆t) · n)2, (8)
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where V i(t) are the measured velocities at points Ri and vi(t) are the calculated
velocities at Ri. The points Ri are taken so that the velocities there are affected
by the scattered wave from the crack. The solution (d, θ) to our inverse problem
is found as the minimizer of this cost.

In our numerical example, the P wave and S wave velocities are 6180(m/sec)
and 3180(m/sec), the time increment ∆t is 0.075 (µsec), the number of the time
steps is 130, and the number of the boundary elements is 10766 (DOF: 32298),
respectively. The cost function J is minimized with an NLP (Quasi-Newton
method), while the gradients of J are computed with the finite difference. The im-
proved parallel BIEM is used on Fujitsu VPP800 (vector-parallel supercomputer)
with 10CPUs in the computation of the cost J in the NLP process. The measured
velocities at Ri (see Figure 9 for typical input data) are thus inverted to yield
(d, θ) = (4.84mm, 89.68◦) as the minimizer of the cost function J , which is quite
close to the true value (d, θ) = (5mm, 90◦). As a check we compared in Figure 9
the measured velocities at R2 and R3 and the calculated velocities at the same
points obtained using the true shape parameters (d, θ). The agreement is quite
satisfactory.
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Figure 9: Measured (EXP) and calculated (BIEM) velocities at R2 and R3

4 Conclusion

In this paper we have presented an improved time domain BIEM for three di-
mensional elastodynamics. This implementation saves the computational time by
avoiding recalculation of the influence coefficients in problems where one cannot
store all these coefficients in the memory. We have also investigated the paral-
lelization of the code. The efficiency of the improved code has been tested in a
simple wave scattering problem, as well as in a large scale time domain problem
related to ultrasonic NDE.

We have seen that the inverse problem we have considered in this paper requires
a very large analysis, although it is still considered to be an academic one. One
may well conclude that the real world problems will need still larger analysis. We
believe that the approaches based on fast methods are the way to go, and we are
trying to further improve the efficiency of the present elastodynamic BIEM code
in time domain with the help of fast multipole methods.
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