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Abstract

A boundary element methodology is presented for the frequency domain elastodynamic
analysis of three-dimensional solids characterized by a linear elastic material behavior
coupled with microstructural effects taken into account with the aid of the simple
gradient elastic theory of Aifantis. A variational statement is established to determine all
possible classical and non-classical (due to gradient terms) boundary conditions of the
general boundary value problem. The gradient frequency domain elastodynamic
fundamental solution is explicitly derived and used to construct the boundary integral
representation of the solution with the aid of a reciprocal integral identity. In addition to
a boundary integral representation for the displacement, a boundary integral
representation for its normal derivative is also necessary for the complete formulation of
a well posed problem. All the kernels in the integral equations are explicitly provided.
Surface quadratic quadrilateral boundary elements are employed and the discretization
is restricted only to the boundary. The solution procedure is described in detail. A
numerical example serves to illustrate the method and demonstrate its accuracy. The
present version of the method does not provide explicit expressions for the computation
of interior stresses.

1. Introduction

In linear elastic materials with microstructure, such as polymers, polycrystals
or granular materials, microstructural effects are important and have to be included in
their constitutive equations. One way of successfully including these effects in a
macroscopic manner is by using higher-order strain gradient theories.

Among those who have developed such theories one can mention Mindlin [1],
[2], Aifantis and co-workers (Aifantis [3], Altan and Aifantis [4], Ru and Aifantis [5])
and Vardoulakis and co-workers (Vardoulakis and Sulem [6], Exadaktylos and
Vardoulakis [7]). From the above theories, the most general and comprehensive is the
one due to Mindlin [1], [2] involving 16 or in its special case 5 elastic constants, while
the simplest is the one due to Aifantis (Aifantis [3], Altan and Aifantis [4], Ru and
Aifantis [5]) involving only 3 elastic constants (two classical plus one non-classical). It
can be easily proved that Aifantis’ theory can be obtained as a special case of Mindlin’s
theory.

In recent years, a variety of boundary value problems of linear gradient
elasticity have been solved analytically and the microstructural effects on the solution
have been assessed under both static and dynamic conditions. The gradient elastic
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theories employed and the geometry of those problems were simple enough to permit an
analytical solution to be obtained. One can mention here the works of Altan and
Aifantis [4], Chang and Gao [15], Exadaktylos and Vardoulakis [10], Gutkin and
Aifantis [9], Georgiadis et al. [16], Tsepoura et al. [11] and Papargyri et al. [12], [19]
dealing with loaded half-spaces, fracture and dislocation mechanics and beams in
tension or bending. It was found that use of gradient elasticity may lead to the
elimination of singularities or discontinuities present in classical elasticity and the
capturing of size effects and wave dispersion in cases where this was not possible in the
classical elasticity context.

However, for realistic engineering problems characterised by complicated
geometry and boundary conditions, analytical methods of solution are inadequate and
resort has to be made to numerical methods, such as the finite element method (FEM) or
the boundary element method (BEM). Among the efforts made for the FEM solution of
boundary value problems in elastostatics in the framework of strain-gradient elastic
behavior, one can mention the works of Shu et al. [17], Amanatidou and Aravas [18]
and Teneketzis Tenek and Aifantis [22], all of them for the case of two-dimensions. The
BEM has also been used for solving three-dimensional strain-gradient elastostatic
problems by Tsepoura et al [14].

In this work the BEM in its direct form is employed for the solution of three-
dimensional frequency domain elastodynamic problems in the framework of the strain-
gradient theory due to Aifantis. The paper is organized as follows: Section 2 deals with
the constitutive equations and the boundary conditions. The latter ones are obtained
through a variational statement and comprise classical and non-classical ones. Section 3
presents the derivation of the fundamental solution of the problem, while section 4
presents the boundary integral representation of the gradient elastostatic problem.
Section 5 describes the numerical implementation and solution procedure, which are
illustrated by means of a numerical example.

2. Constitutive equations and boundary conditions

Consider a three dimensional (3-D) linear, gradient elastic body of volume V'
surrounded by a surface S, the geometry of which is described through a unit normal
vector non S, and a Cartesian coordinate system OX.X,X; with its origin located interior
to V. According to Mindlin’s strain gradient theory [1], [2], the stored stain energy
in ¥ has the form

U=[[7:8+ (@ : V&IV = [ (r,e, + 10,00, ) dV (M
Vv Vv

where T is the classical second order elastic stress tensor being dual in energy to the
strain elastic tensor €, and p is the third order double stress tensor being dual in energy
to the strain gradient V € . The double and triple dots in Eq. (1) indicate dyad and triad
inner products, respectively, according to the rule
(a®b):(c®d)=(b-c)(a-d)
(a®b®m):(1®c®d)=(m-1)(b-c)a-d)
where a, b, ¢, d, m, 1 are vectors in three dimensions, while ® denotes dyadic product
and the symbol (0)**' means

(@)
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(a®b®c)” =c®bR®a (3)

It should be also mentioned that in connection with the subscripts of the double stress
tensor 4, appearing in Eq. (1), the first subscript indicates the direction of the normal

vector on the surface on which double stresses act, while the other two subscripts have
the same significance with the corresponding ones of the classical stress tensor T,

The dynamic governing equation of the considered gradient elastic body as
well as the possible boundary conditions that establish a well-posed boundary value
problem can be determined with the aid of the Hamilton’s variational principle, written
as

f f
[6U-K)t—[owd=0 ©)
t t

where ¢ denotes variation, U is the strain energy given by Eq. (1), 6/ the variation of
the work done by external forces and K the kinetic energy, which in terms of the
displacement vector w have the forms (Mindlin [1], [2])

5W=jf-&udV+j§-[ﬁ-V(éu)]d5+ji5ud3+z§{E-5u}dc ()
1 122 “
K= [olifar ()

In the above Eqs (5) and (6), f denotes body forces, P external surface tractions, R

surface double stresses, E surface jump stresses and p mass density of the gradient

elastic body, while an overdot indicates differentiation with respect to time.

Following a procedure similar to that described in Tsepoura et al. [14] for the
static case and treating the variation of the kinetic energy as described in Papargyri-
Beskoou et al. [19], the variational relation (4) leads to the equation of motion
V-GF-V-fi)+f=pu @)
accompanied by the classical boundary conditions

F(X):ﬁ-?—(ﬁ®ﬁ):%—ﬁ.(vs ) -n-[V .(ﬁ)zm]_i_

oA o A i~ = 8
(V, R)E@ ) i~ (Vh) i = P, ®)
and/or
u=1,
and the non-classical ones
R=n-fi-n=R, and/or Z—uzﬁo ©
n
E=|m®n):|=E, (10)
with the initial conditions
u(x,to)zU(x) (11)

ﬁ(x, t, ) = V(x)
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In the above relations, V is the surface operator defined as v E(T_ﬁ®ﬁ).v with T
being the unit tensor, and Po,ﬁo,ﬁo,qo,ﬁo,U,V denote prescribed values. It should

be also mentioned that boundary condition (10) exists only when the boundary S is
piecewise continuus containing a number of edge lines C,, a =1, 2,...,n formed by the

A

intersection of two surface portions §/”and §{“ of S. In that case, m represents the
vector m=sxh with § being the tangential vector to C,, and the brackets ”” indicate
that the enclosed quantity is the difference between the values on the surface portions
S\ and S{.

Mindlin [2], considering isotropic materials and a special case of his theory
where the macroscopic strain coincides to micro-deformation, proposed a modification
of Hooke’s law expressed by the following relations

6=T+%§
?z2y€+l(V-ﬁ)T (12)
¢=(Vu+uv)/2

g,V + 2 TVE(Y W)+ A, VV(V 1)
where V7 is the Laplacian, & is the total stress tensor, ¥ and § are the so-called by
Mindlin, Cauchy stress tensor and relative stress tensor, respectively, and € is the

strain tensor. The total stresses are correlateds to strains and strain gradients through
five independent material constants, i.e., 4, u,c,,c, and ¢, with the first two being the

s

well known Lame’ constants.
A simpler and mathematically more tractable constitutive equation is that
proposed by Aifantis and co-workers (Altan and Aifantis [4], Ru and Aifantis [5]) and

correlates the relative stress tensor § with the double stresses p according to the

relations
S=-V-R (13)
n=g’vi

where g? is the volumetric strain gradient energy coefficient, the only constant which
relates the microstructure with the macrostructure. It is easy to see that this simple
theory can be obtained as a special case of that of Mindlin if one sets

¢, =c,=g>andc, =0 in Egs (12).

Adopting the above simple theory of Aifantis and inserting the constitutive
Egs (13) into Eq. (7) one obtains the following equation of motion of a gradient elastic
continuum in terms of the displacement field u :

LV +(A+ VY T - gV (uV2T +(A+ @)VV )+ = pi (14)
Considering harmonic with respect to time # behavior for both displacements and body
forces (ﬁ =ue ' f=fe '™ ), Eq. (14) is transformed to a frequency domain equation of
motion of the form

[V U+ (A+ )VV u— gV (uVu+ (A + g)VV -u)+f + pou =0 (15)
with @ being the excitation frequency.
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3. Frequency domain gradient elastic fundamental solution

In this section the frequency domain fundamental solution of an infinitely extended
gradient elastic material, the dynamic behavior of which is described by Eq. (15), is
explicitly derived. This fundamental solution is defined as the solution of the partial
differential equation

U (1) =6(x-y)I (16)
where ¢ is the Dirac 5-function, x is the point where the displacement field U™ due to a
unit force applied at a point y should be obtained, , = ‘x - y‘ and 3 is the linear
operator
=V +(A+ VY=gV (V2 +(A+ )V -+ poo’ (17)
According to the Helmholtz decomposition applied to dyadic fields (Dassios
and Lindel [20]), the fundamental solution U"(r)can be decomposed into irrotational
and solenoidal parts as
ﬁ*(r):VV(p(r)+ VVxA(r)+V><V><§(r) (18)
where ¢(r) is a scalar function, A(r) a vector function and G(r) a dyadic function.
Since vector A(r) is a function of r, it is easy to see that

VxA(r)=0 (19)

Substituting Eqs (18) and (19) into Eq. (16) and taking into account the relation

vz(lj 50 (20)
4rr

and the identity

V? = Vdiv — V x rot (21)

Eq. (16) takes the form
V[ (2+24)[V0(r)- gV olr)|+ po’olr) |+
VXV x [y(Vza(r) g'v? G )+ pa)QG r ]

VV(IJ -V xVx (lfj
Anr Anr

Due to the irrotational and solenoidal nature of () and G(r), respectively,
Eq. (22) is satisfied when

(22)

Vip(r)-g’Vielr)+k; (/’(V)=M 23)
V2G(r)- g*V*G(r)+ k> G(r) = - 47[1# i (24)

where k, = po’ /(1+ zu) and k, =+ po’ / u stand for the wave numbers of

classical longitudinal and shear waves, respectively.

Utilizing the dispersion relations of the homogeneous Eqs (23) and (24), i.e.,
2 27,2 2

K1+ g2k )= k2 25)

Blven)=k
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Egs (23) and (24) become
1
Vip(r)-g*v* k1 + gk} = (26)
¢(”) g W(”)"' 1(+g 1)¢(”) 47[(14_2,”)’,
V2G(r)- V') + K21+ g2K2)E(r) = - T @7
4 ur

The scalar ¢(r) and tensor G(r) functions, which satisfy Egs (26) and (27),
respectively, have the form

o) 1|1 1+g%> e™ g%k’ e (28)

Cdmpo’ | r 1+2g%° ¢ 1+2g% r

G(r _ 1 l_ 1+g2k22 e—ikzr B g2k2 e T (29)
dnpo’ | ¥ 1+2g%,° r  1+2g%,° r
where i =+/—1.

Inserting Eqs (28) and (29) into Eq. (18) and taking into account Eq. (19), the
fundamental solution of Eq. (16) takes the final form

ﬁ*(r)=m[\y(r, O - X(r.gff @7 (30)

where t the unit vector in the direction r =y —x and X and ¥ are scalar functions
given by the relations

X(r’g):(4(1—v) {{ngk; (1+.i—izj£—

1+ g%k, ) || 1+2¢%;

272 2 —ikyr
1+sz12 k—lz 1+i—% s
1+2g°%k \ k, ikr  k'r r

—| %Jrkf]r

1+ gkl | Kk} 3 3 e{g
g )| e o (1)

& A L2+k12 r [2+klzjr2

g g
| —+k2 |r

iy )

1+ g%k, 3 N 3 e
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41-v) || 1+ g%k 1 1 Je™
¥(r,g)= lf— |
(r,g) (1 + gzkzz){{l + 2g2k22 i ik,r k22 or

1+g%k (K[ 1 1 \e™
Tl a7 22| "
1+2g°%k \ k5 )\ikyr k7 r

1+ gk (ﬁ L, e B
1+2g%k* | k°
gk k, 1 ; Lz‘*'kf 2 r
g

(32)

—[ %+k§]r
1+ g°k; 1 1 e '®
1+2g%k; b 1 ’ 1 r

? 72+k22 A (2+k22Jr2
g g

4. Boundary integral representation of the problem

In this section the boundary integral representation of a gradient elastodynamic
problem, for the most general case of a non-smooth boundary, is derived in the
frequency domain. Consider a finite 3-D gradient elastic body of volume V surrounded
by a surface S consisting, for the shake of simplicity, of two smooth surfaces S; and S,
intersecting across the closed line C, whose motion in the frequency domain is
described by Eq. (15). Assuming two deformation states of the same body (f ,u,c) and

(f *,u*,c*) and following a similar procedure to that described in Tsepoura et al. [14],

one can obtain the following reciprocal identity valid for the considered gradient elastic
continuum:

f" u—f-u ([dV+|{P -u—P-u(dS = R~—au* —R*~—au ds +
s s

1 no on (33)
Z§{E-u*—E*-u}dC
¢ c,
where the surface tractions P, R and E have the form
P=i T @@R): (V- [V ]
V.-n)m®n):p—(Vn): i
(Vg -m)( ):p—(Ven):p (34)
R=n-p-n
E=|m®n):j
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Assume that the displacement field U”, appearing in the reciprocal identity (33), is the
result of a body force having the form

f(y)=o(x-y)e (35)
with J being the Dirac d-function and € the direction of a unit force acting at point y.
Recalling the definition of the fundamental solution derived in section 3, it is easy to see
that the displacement field U"can be represented by means of the fundamental

displacement tensor ﬁ*(x,y) given by Eq. (30), according to the relation

U'(y)=U"(xy)-é (36)
Inserting the above expression of U™ in (32) and assuming zero body forces =0, one
obtains

[{ox-y)e-uy)}ar, +

[ 1Py &1-u() - P(y) [T" (x.) €1}, =

HR( ) [aU 0V §-[R (x.y)- 2 8“(”}clsy+

N )’ y

(37

§{E(y)-[ﬁ*(x ¥)-&-[E (x.y)-&-u(y)dC,

o

T
([ (x=yyu(y)}dr,)-&+
(P )" -um) —P(y) T (x.y) JdS,) -6 =

(3%)

RO)-IR )T -2 s, )6+

y

iz
({W (xy)

FE®) T oy ~[E ey um)dc, )&

Considering that relation (38) is valid for any direction € and taking into
account the symmetry of the fundamental displacement &", one obtains the boundary
integral equation

T w0 + [ {1 )T u(y) - U (6y) - P(y) S, =

3 T 3 39
| {‘WJ ‘R(y)-[R (X,y)]T'¥ ds, + "

% on

y y

§{‘7*(X,y) E(y) - [E" (x.y)]" -u(y)ldC

C
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where ¢(x) is the well known jump-tensor of classical boundary integral representation

(Dominguez [21]). Utilizing the symbols P, 6*, R’ and E' instead of (IN)*)T,

~\T
[GU] , (ﬁ*)T and (lNE*)T , respectively, Eq. (39) receives the form
on

€00 -u)+ [Py uw) - U (xy)- P fds, =

=, =, 40
| {Q xy)-R(y)-R(x,y)- a;rf”}dé‘y + 0

Hﬁ*(x,y) ‘E(y)-E'(x,)- u(y)}dc
C
In case the boundary S is smooth, then integral equation (40) is reduced to

%u(x)+ | {§*<x,y>-u(y)—ﬁ*(x,y)-P(y)}dsy =
s (41)

[ {Q*(xy) Ry R (xy)- a“(”} ds,
S on,

All the kernels appearing in the integral equations (40) and (41) are given explicitly in
Appendix .

Observing Eq. (40), one easily realizes that this equation contains two
unknown vector fields, u(x) and ou(x) /0n. For example, for the case of the traction field
P(x) prescribed on S (classical boundary condition) as well as the fields R(x) and E(x)
prescribed on S (non-classical boundary condition), the unknown vector fields in (40)
are two, u(x) and ou(x) /On. Thus, the evaluation of the unknown fields u(x) and
6u(x)/6n requires the existence of one more integral equation. This integral equation is

obtained by applying the operator 8/ anx on (40) and has the form

- a;(:&) N !{apa(i’y) u(y) - aUaij,y) ,p(y)} as, =
[P gy Ry )|y, 42
S on, on, on,

Haﬁ*(x’” E(y)- —aE &) <y)}dc

v on

X x

For smooth boundaries S, integral equation (42) is reduced to
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l ou(x) + J‘{af)*(x»y) u(y) _aINJ*(X’y)p(y)}dS =
on on !

2 Einx S X X (43)
I{ao (9) gy RV, au(y)} s,
% on, on, on,

The kernels appearing in Eqs (42) and (43) are given explicitly in Appendix II.

The integral equations (40) and (42) accompanied by the classical and non-
classical boundary conditions (8), (9) and (10), respectively, form the integral
representation of any gradient elastic boundary value problem satisfying the partial
differential equation (15). The present version of the formulation is restricted to
problems requiring computation of tractions and stresses only at the boundary. Work is
under way to produce expressions for the explicit computation of interior stresses.

5. Numerical implementation and numerical results

In this section, the boundary element formulation and solution procedure of a 3-D static
gradient elastic problem described in integral form by Eqs (41) and (43) is presented in
detail. The goal of the boundary element methodology is to solve numerically the well-
posed boundary value problem consisting of the system of the two integral equations
(41) and (43) and the boundary conditions (8) and (9). To this end, the smooth surface S
is discretized into B eight-noded quadrilateral and/or six-noded triangular quadratic
continuous isoparametric boundary elements. For a nodal point k, the discretized
integral equations (41) and (43) have the form

D ST R vV G e e £ a5 e, us +

e=l a=1 _1 |

Ry (68 N (6.6 (6 ) dE e, - = (44)

e=1 a=1 _1_ nx

$§1} R (x 3 G8)) ye e 2 (e )0z 0z, qf = 43)

1 -

e=l a

”aU (x ,616’(51,52))Na(§1’éz)J(fpé)dgld@ P+

B )L L ACY
o A TV ERSTENERE
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where A4(e) is the number of nodes of the current element e (A = 8 or 6 for quadrilateral
or triangular elements, respectively), N* (a = 1, 2,..., A) are the shape functions of a
typical quadrilateral or triangular quadratic element, J the corresponding Jacobian of the
transformation from the global (X;, X3, X3) to the local co-ordinate system (&, &) and
u’, q¢, P¢ and R¢ are the nodal values of the corresponding field functions. Adopting

now a global numbering for the nodes, each pair (e, a) is associated to a number S and
the integral equations (44) and (45) are written as

—u +ZH" ﬁ+ZK" ! —ZG" PMZU R’ (46)
B=1 B=1 =

RS W RTESN R W IR “

2 p=1 p=1 p=1 p=1

where L is the total number of nodes and

il = [ [y eV (68 (e ), (48)
-1-1 (e;a)>p

R = [ [R5y (6.6 (6.6 (6.6 )dé dg, (49)
—1-1 (e,a)>f

Gj = j j U (v (€0 &IV (6,6 W (6.6, )d4 dg, (50)
-1-1 (e.a)>p

0 = [JQ 6y (G )N (6.6 W(E & )dgds, (1)
-1-1 (e,a)>p

-, 116:* k’ “(&.¢, .

s, - [ Sl Do, £ 0t6, o (52)
—1-1 nx

(e;a)>p

LR = (5"52)>N“(§1,§2 V(& &)dédeE, (53)
- (ea)>p

V= j jaU ',y (5"52))N“(51,52) (. )dgde, (54)
-1-1 Ny (e.a)>p

W, - [ [P = Cot e e, 1e, 2 )as e, (55)
- "x (ea)>p

Collocating Eqs (46) and (47) at all nodal points L, one obtains the linear
system of algebraic equations

1~

el Sl
S lT+T q vV W] (R
2
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where matrices H, K, S, T, G, L, V and W contain all the submatrices given by
Egs. (48)-(55), respectively. Applying the boundary conditions (8) and (9) and
rearranging Eq. (56), one produces the final linear system of algebraic equations of the
form

A-X=B (57)
where the vectors X and B contain all the unknown and known nodal components of the
boundary fields,respectively and A is a known influence matrix.

When g # k, integrals (48)-(55) are non-singular and can be easily computed
numerically by Gauss quadrature, utilizing, as in the present work a 6x6 integration
points scheme. In case £ = k, the integrals (50), (51) and (54) are also non-singular,
while the remaining integrals (48), (49), (52), (53) and (55) become singular with the
first two being weakly singular integrals, the next two strongly singular (CPV) integrals
and the last one a hypersingular integral. In the present work, the singular integrals are
evaluated with high accuracy by applying a direct methodology explained in the work
of Tsepoura et al. [14].

In order to demonstrate the accuracy of the proposed here 3-D gradient elastic
boundary element methodology, a simple example dealing with the harmonic excitation
of a solid sphere of radius @ by a uniform external pressure P,, is numerically solved.

The classical boundary condition of the problem is

P(y)=FF  yeS, (58)
and the non-classical one
R(y)=0, yes, (59)

where §  is the surface of the sphere. This problem can be easily solved analytically

and its solution, as obtained by the present authors, has the form

0, ) =2 )+ S ) (60)

where
A=-2(1+Vv)aP, [kf (~1+2v)d’ ((1 +g%k! )a(a2 +g’ (6 +kla’ ))cosh(fla)—

3gl+ g7kl (> + g2+ kPa? ))sinh(fla)ﬂ /[2\/1+g2k12 E(\/ngkf acosh(?,a)
(2k,(1+2g7k?2 Ja3g? (= 3+ 4v)—(1-2v)a? Jcos(k,a) + (- 68> (1 + 22k |- 3+ 4v)+
21-2v-g?k2 2+ v)+ g ki (- 6+ ) + [k, + g2k f (-1+ v)a4)sin(k]a)+ (61)
glkal-6g>(1+2g%k2 -3+ 4v)—2(-3+6v+5g%k2 (- 2+3v)+ gk -6+ Tv)la” +
g2k 1+ g k2 =1+ v)a* Joos(k,a)-3(1+ 2¢ k2 fa® (2 — 4v+k (—1+v)a® )+

g’ (6 —8v+ki(-1+v)a ))sin(kla)sinh(é la))]
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C =2Pa(1+v)g(l+ g2k -1+ 2v)a (kal- 6 + k2a* Jeos(ka) - 3(~ 2 + k2a* Jsin(ka))]/
[215(,/1 + gk acosh(?,a)2k 1+ 2¢°k2 Ja(Bg (= 3+ 4v } (— 1+ 20)a” Jeos(k,a) +
(- 6821+ 287K =3 +4v)+ 21— 2v - K22+ v k(- 6+ 7v)) + (62)

<k1 + gzkf)z(— 1+ v)a4)sin(k1a))+ g(kla(— 6g” (1 +2g°k! X— 3+4v)-
2(-3+6v+5g%2 (- 2+3v)+ gk (- 6+ 1)+ £k 1+ g%k =1+ v)a* Jeos(kya) -
31+ 2622 fa2 (2 - 4v+ k(= 1+ v)a? b g2(6 - 8v + k! (- 1+ v)a* )Jsin (k,a))sinh(¢,a))]

where /7, =1+ g%k} /g, while j, (k) and [7z/(2¢,r) 13/2(€1r) are, the first order

spherical Bessel function of the first kind and the first order modified Bessel function
of the first kind, respectively.

Assuming ¢ =1 and P, =1 and discretizing only one octant of the sphere (due
to the symmetry), the radial displacements as well as the radial strains for three values
of the volumetric strain gradient energy coefficient g/ 0. (g/a=0.05,0.5,1) and for the
excitation frequencies w =0.002rad /sec and @ =40rad/sec, are evaluated. Both
displacement and strain radial fields are depicted in Figures 1, 3 and 2, 4, respectively,
as functions of 7/a and compared to the corresponding analytical ones. As it is evident
from Figures 1-4 the agreement between the solutions is excellent. It is also observed
that for low frequencies the gradient effect is negligible, while it becomes important for
higher frequencies and small but non-zero values of the gradient coefficient.

=0.002rad/sec
0.0 =
BEM - Linear elasticity
O BEM - gradient g/« =0.05
§ O BEM - gradient g/ a=0.5
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3
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T 044
S 0.4
£
[0]
3
- -0.64
2
©
s
T -
2 0.8
—
-1.0 4
T T T

T T T T T T T T
0.0 0.2 04 0.6 0.8 1.0

Distance r/ a
Figure 1: Dimensionless radial displacement u,/a versus dimensionless radial distance
r/a for various values of g/o and @ = 0.002rad /sec.

186



D. Polyzoset a. / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 174-200 (2003)

0.0
©=0.002rad/sec
i BEM - Linear elasticity
O BEM - gradient g/ 0=0.05
O BEM - gradient g/ a=0.5
-0.5 Vv BEM - gradient g/ a=1.0
o
£
2_1_0_ BB 5 5B B 5 55k
»
s
S ]
Y
-1.54
-2.0 T T T T T T T T T

0.0 0.2 04 06 08 1.0
Distance r/ a
Figure 2: Dimensionless radial strain e, versus dimensionless radial distance /o for
various values of g/a and @ = 0.002rad /sec.
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Figure 3: Dimensionless radial displacement u,/a versus dimensionless radial distance
r/o for various values of g /o and @ = 40rad /sec .
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Figure 4: Dimensionless radial strain e, versus dimensionless radial distance »/a for
various values of g/a and @ = 40rad / sec.

6. Conclusions

A boundary element method for solving three-dimensional static, gradient
elastic problems in the frequency domain has been developed. Microstructural effects
on the macroscopic behavior of the elastic material behavior have been taken into
account by means of a simple gradient elastic theory due to Aifantis.

The equation of motion as well as all the possible boundary conditions
(classical and non-classical) has been determined with the aid of a variational statement
of the problem. The fundamental solution and the reciprocity identity of the gradient
elastic problem have been explicitly determined. Both have been used to establish the
boundary integral equation of the problem consisting of one equation for the
displacement and another one for its normal derivative.

The numerical implementation of the problem is accomplished by discretizing
the boundary of the problem into quadratic quadrilateral elements and employing
advanced integration algorithms for the highly accurate evaluation of the singular
integrals. A representative numerical example has been presented to illustrate the
method and demonstrate its high accuracy.

Appendix I
In this Appendix the explicit expressions of the kernels appearing in the integral
equation (41) are given as follows:

Uy)e— ' [wi-xi®f L1
U(x,y)—l67w(l_v)[‘PI Xr®r] (L1
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The terms of kernel P* are given as follows:

G, %) =m7[é_v)[A(ﬁy #)i @+ B, )T +
B, ®F+Ci®h, |

(L6)
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APPENDIX 11

In this Appendix the explicit expressions of the kernels appearing in the
integral equation (43) are given as follows:
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