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Abstract 
A boundary element methodology is presented for the frequency domain elastodynamic 
analysis of three-dimensional solids characterized by a linear elastic material behavior 
coupled with microstructural effects taken into account with the aid of the simple 
gradient elastic theory of Aifantis. A variational statement is established to determine all 
possible classical and non-classical (due to gradient terms) boundary conditions of the 
general boundary value problem. The gradient frequency domain elastodynamic 
fundamental solution is explicitly derived and used to construct the boundary integral 
representation of the solution with the aid of a reciprocal integral identity. In addition to 
a boundary integral representation for the displacement, a boundary integral 
representation for its normal derivative is also necessary for the complete formulation of 
a well posed problem. All the kernels in the integral equations are explicitly provided. 
Surface quadratic quadrilateral boundary elements are employed and the discretization 
is restricted only to the boundary. The solution procedure is described in detail. A 
numerical example serves to illustrate the method and demonstrate its accuracy. The 
present version of the method does not provide explicit expressions for the computation 
of interior stresses. 
 
1. Introduction 
 In linear elastic materials with microstructure, such as polymers, polycrystals 
or granular materials, microstructural effects are important and have to be included in 
their constitutive equations. One way of successfully including these effects in a 
macroscopic manner is by using higher-order strain gradient theories. 
 Among those who have developed such theories one can mention Mindlin [1], 
[2], Aifantis and co-workers (Aifantis [3], Altan and Aifantis [4], Ru and Aifantis [5]) 
and Vardoulakis and co-workers (Vardoulakis and Sulem [6], Exadaktylos and 
Vardoulakis [7]). From the above theories, the most general and comprehensive is the 
one due to Mindlin [1], [2] involving 16 or in its special case 5 elastic constants, while 
the simplest is the one due to Aifantis (Aifantis [3], Altan and Aifantis [4], Ru and 
Aifantis [5]) involving only 3 elastic constants (two classical plus one non-classical). It 
can be easily proved that Aifantis’ theory can be obtained as a special case of Mindlin’s 
theory. 
 In recent years, a variety of boundary value problems of linear gradient 
elasticity have been solved analytically and the microstructural effects on the solution 
have been assessed under both static and dynamic conditions. The gradient elastic 
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theories employed and the geometry of those problems were simple enough to permit an 
analytical solution to be obtained. One can mention here the works of Altan and 
Aifantis [4], Chang and Gao [15], Exadaktylos and Vardoulakis [10], Gutkin and 
Aifantis [9], Georgiadis et al. [16], Tsepoura et al. [11] and Papargyri et al. [12], [19] 
dealing with loaded half-spaces, fracture and dislocation mechanics and beams in 
tension or bending. It was found that use of gradient elasticity may lead to the 
elimination of singularities or discontinuities present in classical elasticity and the 
capturing of size effects and wave dispersion in cases where this was not possible in the 
classical elasticity context. 
 However, for realistic engineering problems characterised by complicated 
geometry and boundary conditions, analytical methods of solution are inadequate and 
resort has to be made to numerical methods, such as the finite element method (FEM) or 
the boundary element method (BEM). Among the efforts made for the FEM solution of 
boundary value problems in elastostatics in the framework of strain-gradient elastic 
behavior, one can mention the works of Shu et al. [17], Amanatidou and Aravas [18] 
and Teneketzis Tenek and Aifantis [22], all of them for the case of two-dimensions. The 
BEM has also been used for solving three-dimensional strain-gradient elastostatic 
problems by Tsepoura et al [14]. 
 In this work the BEM in its direct form is employed for the solution of three-
dimensional frequency domain elastodynamic problems in the framework of the strain-
gradient theory due to Aifantis. The paper is organized as follows: Section 2 deals with 
the constitutive equations and the boundary conditions. The latter ones are obtained 
through a variational statement and comprise classical and non-classical ones. Section 3 
presents the derivation of the fundamental solution of the problem, while section 4 
presents the boundary integral representation of the gradient elastostatic problem. 
Section 5 describes the numerical implementation and solution procedure, which are 
illustrated by means of a numerical example. 
 
2. Constitutive equations and boundary conditions 

Consider a three dimensional (3-D) linear, gradient elastic body of volume V 
surrounded by a surface S, the geometry of which is described through a unit normal 
vector n̂on S, and a Cartesian coordinate system OX1X2X3 with its origin located interior 
to V.  According to Mindlin’s strain gradient theory [1], [2], the stored stain energy 
in V has the form  

∫∫ ∂+=∇+=
V

jkiijkijij
V

VeeVU d)(d]~:)~(~:~[ 321 δµτeµeτ                                                (1) 

where τ~  is the classical second order elastic stress tensor being dual in energy to the 
strain elastic tensor e~ , and µ~ is the third order double stress tensor being dual in energy 
to the strain gradient ∇ e~ . The double and triple dots in Eq. (1) indicate dyad and triad 
inner products, respectively, according to the rule  

))()(()()(
))(()(:)(

dacblmdclmba
dacbdcba

⋅⋅⋅=⊗⊗⊗⊗
⋅⋅=⊗⊗

M
                                                               (2) 

where a, b, c, d, m, l are vectors in three dimensions, while ⊗ denotes dyadic product 
and the symbol 321)(o  means 
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abccba ⊗⊗=⊗⊗ 321)(                                                                                                (3) 
It should be also mentioned that in connection with the subscripts of the double stress 
tensor ijkµ  appearing in Eq. (1), the first subscript indicates the direction of the normal 
vector on the surface on which double stresses act, while the other two subscripts have 
the same significance with the corresponding ones of the classical stress tensor ijτ .  

The dynamic governing equation of the considered gradient elastic body as 
well as the possible boundary conditions that establish a well-posed boundary value 
problem can be determined with the aid of the Hamilton’s variational principle, written 
as 

( ) 0dd 
1

0

1

0

=−− ∫∫ tWtKU
t

t

t

t

δδ                                                                                              (4) 

where δ  denotes variation, U  is the strain energy given by Eq. (1), Wδ  the variation of 
the work done by external forces and K  the kinetic energy, which in terms of the 
displacement vector u  have the forms (Mindlin [1], [2]) 

{ } CSSVW
a a

C CSSV

ddd])(ˆ[d ∑ ∫∫∫∫ ⋅+⋅+∇⋅⋅+⋅= uEuPunRuf δδδδδ                            (5) 

VρK d
2
1

V

2

∫= u&                                                                                                               (6) 

In the above Eqs (5) and (6), f  denotes body forces, P  external surface tractions, R  
surface double stresses, E  surface jump stresses and ρ  mass density of the gradient 
elastic body, while an overdot indicates differentiation with respect to time. 
 Following a procedure similar to that described in Tsepoura et al. [14] for the 
static case and treating the variation of the kinetic energy as described in Papargyri-
Beskoou et al. [19], the variational relation (4) leads to the equation of motion 

( ) ufµτ && ~~ ρ=+⋅∇−⋅∇                                                                                                    (7) 
accompanied by the classical boundary conditions 
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and the non-classical ones 

00 and/orˆ~ˆ quRnµnR =
∂
∂

=⋅⋅=
n

                                                                            (9) 

0
~)ˆˆ( Eµ:nmE =⊗=                                                                                                   (10) 

with the initial conditions 
( ) ( )
( ) ( )xVxu

xUxu
=

=
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,
,
t
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&
                                                                                                              (11) 
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In the above relations, S∇  is the surface operator defined as ( ) ∇⋅⊗−≡∇ nnI ˆˆ~
S  with I~  

being the unit tensor, and 00  , uP , 00 , qR , 0E , VU,  denote prescribed values. It should 
be also mentioned that boundary condition (10) exists only when the boundary S is 
piecewise continuus containing a number of edge lines Ca , a =1, 2,…,n formed by the 
intersection of two surface portions )(

1
aS and )(

2
aS  of S. In that case, m̂  represents the 

vector nsm ˆˆˆ ×=  with ŝ  being the tangential vector to Ca, and the brackets ⋅  indicate 
that the enclosed quantity is the difference between the values on the surface portions 

)(
1

aS  and )(
2

aS . 
Mindlin [2], considering isotropic materials and a special case of his theory 

where the macroscopic strain coincides to micro-deformation, proposed a modification 
of Hooke’s law expressed by the following relations 

( )
( )

( ) ( )[ ]uuIes

uue
Iueτ

sτσ

⋅∇∇∇+⋅∇∇+∇−=

∇+∇=
⋅∇+=

+=

2
2

1
2

3
~~2~

2~

~~2~

~~~

ccc λλµ

λµ                                                          (12) 

where 2∇  is the Laplacian, σ~  is the total stress tensor, τ~  and s~  are the so-called by 
Mindlin, Cauchy stress tensor and relative stress tensor, respectively, and e~  is the 
strain tensor. The total stresses are correlateds to strains and strain gradients through 
five independent material constants, i.e., 321  and ,,, cccµλ  with the first two being the 
well known Lame’ constants. 

A simpler and mathematically more tractable constitutive equation is that 
proposed by Aifantis and co-workers (Altan and Aifantis [4], Ru and Aifantis [5]) and 
correlates the relative stress tensor s~  with the double stresses µ~  according to the 
relations 

τµ
µs
~~
~~

2∇=

⋅−∇=

g
                                                                                                                     (13) 

where g2 is the volumetric strain gradient energy coefficient, the only constant which 
relates the microstructure with the macrostructure. It is easy to see that this simple 
theory can be obtained as a special case of that of Mindlin if one sets 

0 and g 3
2

21 === ccc  in Eqs (12). 
 Adopting the above simple theory of Aifantis and inserting the constitutive 
Eqs (13) into Eq. (7) one obtains the following equation of motion of a gradient elastic 
continuum in terms of the displacement field u : 

( ) ufuuuu &&ρµλµµλµ =+⋅∇∇++∇∇−⋅∇∇++∇ )()( 2222 g                                   (14) 
Considering harmonic with respect to time t  behavior for both displacements and body 
forces ( )titi ee ωω −− == ffuu , , Eq. (14) is transformed to a frequency domain equation of 
motion of the form 

( ) 0)()( 22222 =++⋅∇∇++∇∇−⋅∇∇++∇ ufuuuu ρωµλµµλµ g                          (15) 
with ω  being the excitation frequency. 
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3. Frequency domain gradient elastic fundamental solution 
In this section the frequency domain fundamental solution of an infinitely extended 
gradient elastic material, the dynamic behavior of which is described by Eq. (15), is 
explicitly derived. This fundamental solution is defined as the solution of the partial 
differential equation 

IyxU ~)()(~ * −=ℑ δr                                                                                                      (16) 
where δ is the Dirac δ-function, x is the point where the displacement field *~U  due to a 
unit force applied at a point y should be obtained, yx −=r  and ℑ  is the linear 
operator 

( ) 22222 )()( ρωµλµµλµ +⋅∇∇++∇∇−⋅∇∇++∇≡ℑ g                                              (17) 
According to the Helmholtz decomposition applied to dyadic fields (Dassios 

and Lindel [20]), the fundamental solution ( )r*~U can be decomposed into irrotational 
and solenoidal parts as 

( ) ( ) ( ) ( )rrrr GAu* ~~ ×∇×∇+×∇∇+∇∇= ϕ                                                                 (18) 
where ( )rϕ  is a scalar function, ( )rA  a vector function and ( )rG~  a dyadic function. 
Since vector )(rA  is a function of r , it is easy to see that 

0)( =×∇ rA                                                      (19) 
Substituting Eqs (18) and (19) into Eq. (16) and taking into account the relation 

( )rδ
π

−=





∇

r4
12                                                                                                          (20) 

and the identity  
rotdiv2 ×∇−∇=∇                                                                                             (21) 

Eq. (16) takes the form  
( ) ( ) ( )[ ] ( )[ ]

( ) ( )( ) ( )[ ]
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ππ

ωµ
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                                                        (22) 

Due to the irrotational and solenoidal nature of ( )rϕ  and ( )rG~ , respectively, 
Eq. (22) is satisfied when 

( ) ( ) ( ) ( ) rrkrgr p  2 4
1 2422

µλπ
ϕϕϕ

+
=+∇−∇                                                             (23) 

( ) ( ) ( ) IGGG ~
  4

1~ ~~ 2422

r
rkrgr s µπ

−=+∇−∇                                                                (24) 

where ( )µλρω 22 +=pk  and µρω 2=sk  stand for the wave numbers of 
classical longitudinal and shear waves, respectively. 
Utilizing the dispersion relations of the homogeneous Eqs (23) and (24), i.e., 

( )
( ) 22

2
22

2

22
1

22
1

1

1

s

p

kkgk

kkgk

=+

=+                                                                                                          (25) 
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Eqs (23) and (24) become 

( ) ( ) ( ) ( ) ( ) r
rkgkrgr

 2 4
1 1 2
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=++∇−∇                                              (26) 
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−=++∇−∇                                                  (27) 

The scalar ( )rϕ  and tensor ( )rG~  functions, which satisfy Eqs (26) and (27), 
respectively, have the form 
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where 1−=i .  
Inserting Eqs (28) and (29) into Eq. (18) and taking into account Eq. (19), the 

fundamental solution of Eq. (16) takes the final form   

( ) ( ) ( ) ( )[ ]rrΙU* ˆˆ,~,
116

1~
⊗Χ−Ψ

−
= grgrr

νπµ
                                                               (30) 

where r̂  the unit vector in the direction xyr −=  and Χ and Ψ are scalar functions 
given by the relations  
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4. Boundary integral representation of the problem 
In this section the boundary integral representation of a gradient elastodynamic 
problem, for the most general case of a non-smooth boundary, is derived in the 
frequency domain. Consider a finite 3-D gradient elastic body of volume V surrounded 
by a surface S consisting, for the shake of simplicity, of two smooth surfaces S1 and S2 
intersecting across the closed line C, whose motion in the frequency domain is 
described by Eq. (15). Assuming two deformation states of the same body ( )σuf ,,  and 
( )*** ,, σuf  and following a similar procedure to that described in Tsepoura et al. [14], 
one can obtain the following reciprocal identity valid for the considered gradient elastic 
continuum:  

{ } { }

{ }∑ ∫

∫∫∫
⋅−⋅
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∂
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where the surface tractions P , R and E have the form 
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Assume that the displacement field *~U , appearing in the reciprocal identity (33), is the 
result of a body force having the form  
( ) ( )eyxyf ˆ* −= δ                                                                                                           (35) 

with δ being the Dirac δ-function and ê  the direction of a unit force acting at point y. 
Recalling the definition of the fundamental solution derived in section 3, it is easy to see 
that the displacement field *U can be represented by means of the fundamental 
displacement tensor ( )yxU ,~ *  given by Eq. (30), according to the relation  

( ) ( ) eyxUyU ˆ,~ ** ⋅=                                                                                                       (36) 
Inserting the above expression of *U  in (32) and assuming zero body forces f=0, one 
obtains 
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Considering that relation (38) is valid for any direction ê  and taking into 
account the symmetry of the fundamental displacement *~u , one obtains the boundary 
integral equation 
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where )(~ xc  is the well known jump-tensor of classical boundary integral representation 

(Dominguez [21]). Utilizing the symbols *~
P , *~

Q , *~
R  and *~

E  instead of ( )T*~P , 
T*~
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U , ( )T*~R  and ( )T*~E , respectively, Eq. (39) receives the form  
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In case the boundary S is smooth, then integral equation (40) is reduced to 
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All the kernels appearing in the integral equations (40) and (41) are given explicitly in 
Appendix I. 
 Observing Eq. (40), one easily realizes that this equation contains two 
unknown vector fields, u(x) and ∂u(x) /∂n. For example, for the case of the traction field 
P(x) prescribed on S (classical boundary condition) as well as the fields R(x) and E(x) 
prescribed on S (non-classical boundary condition), the unknown vector fields in (40) 
are two, u(x) and ∂u(x) /∂n. Thus, the evaluation of the unknown fields u(x) and 

( ) n∂∂ xu  requires the existence of one more integral equation. This integral equation is 

obtained by applying the operator xn∂∂  on (40) and has the form 
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For smooth boundaries S, integral equation (42) is reduced to  
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The kernels appearing in Eqs (42) and (43) are given explicitly in Appendix II. 
 The integral equations (40) and (42) accompanied by the classical and non-
classical boundary conditions (8), (9) and (10), respectively, form the integral 
representation of any gradient elastic boundary value problem satisfying the partial 
differential equation (15). The present version of the formulation is restricted to 
problems requiring computation of tractions and stresses only at the boundary. Work is 
under way to produce expressions for the explicit computation of interior stresses. 
 
5. Numerical implementation and numerical results 
In this section, the boundary element formulation and solution procedure of a 3-D static 
gradient elastic problem described in integral form by Eqs (41) and (43) is presented in 
detail. The goal of the boundary element methodology is to solve numerically the well-
posed boundary value problem consisting of the system of the two integral equations 
(41) and (43) and the boundary conditions (8) and (9). To this end, the smooth surface S 
is discretized into B eight-noded quadrilateral and/or six-noded triangular quadratic 
continuous isoparametric boundary elements. For a nodal point k, the discretized 
integral equations (41) and (43) have the form  
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where A(e) is the number of nodes of the current element e (A = 8 or 6 for quadrilateral 
or triangular elements, respectively), Na (a = 1, 2,…, A) are the shape functions of a 
typical quadrilateral or triangular quadratic element, J the corresponding Jacobian of the 
transformation from the global (X1, X2, X3) to the local co-ordinate system (ξ1, ξ2) and 

e
au , e

aq , e
aP  and e

aR  are the nodal values of the corresponding field functions. Adopting 
now a global numbering for the nodes, each pair (e, a) is associated to a number β and 
the integral equations (44) and (45) are written as 
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where L is the total number of nodes and  
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Collocating Eqs (46) and (47) at all nodal points L, one obtains the linear 
system of algebraic equations  








⋅








=








⋅

















+

+

R
P

WV
LG

q
u

TIS

KHI
~~
~~

~~
2
1~

~~~
2
1

                                                                  (56) 

D. Polyzos et al. / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 174-200 (2003)

184



  

where matrices H~ , K~ , S~ , T~ , G~ , L~ , V~  and W~ contain all the submatrices given by 
Eqs. (48)-(55), respectively. Applying the boundary conditions (8) and (9) and 
rearranging Eq. (56), one produces the final linear system of algebraic equations of the 
form  

BXA =⋅~                                                                                                                       (57) 
where the vectors X and B contain all the unknown and known nodal components of the 
boundary fields,respectively and A~  is a known influence matrix. 

When β ≠ k, integrals (48)-(55) are non-singular and can be easily computed 
numerically by Gauss quadrature, utilizing, as in the present work a 6×6 integration 
points scheme. In case β = k, the integrals (50), (51) and (54) are also non-singular, 
while the remaining integrals (48), (49), (52), (53) and (55) become singular with the 
first two being weakly singular integrals, the next two strongly singular (CPV) integrals 
and the last one a hypersingular integral. In the present work, the singular integrals are 
evaluated with high accuracy by applying a direct methodology explained in the work 
of Tsepoura et al. [14]. 
 In order to demonstrate the accuracy of the proposed here 3-D gradient elastic 
boundary element methodology, a simple example dealing with the harmonic excitation 
of a solid sphere of radius a  by a uniform external pressure 0P , is numerically solved. 
The classical boundary condition of the problem is 
( )                     ,ˆ 0 aSP ∈= yryP                                                                                      (58) 

and the non-classical one 
( )                     , aS∈= y0yR                                                                                          (59) 

where aS  is the surface of the sphere. This problem can be easily solved analytically 
and its solution, as obtained by the present authors, has the form 
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where gkg 2

1
2

1 1+=l , while ( )rkj 11  and ( ) ( )rr 1231 I 2 llπ  are, the first order 
spherical Bessel function of the first kind  and the first order modified Bessel function 
of the first kind, respectively. 

Assuming 1=a  and 10 =P  and discretizing only one octant of the sphere (due 
to the symmetry), the radial displacements as well as the radial strains for three values 
of the volumetric strain gradient energy coefficient g / α  ( 1 ,5.0 ,05.0=ag ) and for the 
excitation frequencies sec/002.0 rad=ω  and sec/40rad=ω , are evaluated. Both 
displacement and strain radial fields are depicted in Figures 1, 3 and 2, 4, respectively, 
as functions of ar  and compared to the corresponding analytical ones. As it is evident 
from Figures 1-4 the agreement between the solutions is excellent. It is also observed 
that for low frequencies the gradient effect is negligible, while it becomes important for 
higher frequencies and small but non-zero values of the gradient coefficient. 

 

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
ϖ=0.002rad/sec

 BEM - Linear elasticity
 BEM - gradient  g / α =0.05
 BEM - gradient  g / α=0.5
 BEM - gradient  g / α=1.0

ra
di

al
 d

is
pl

ac
em

en
t u

r /
 α

Distance r / α  
Figure 1: Dimensionless radial displacement ur/α versus dimensionless radial distance 
r/α for various values of g/α and sec/002.0 rad=ω . 
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Figure 2: Dimensionless radial strain er versus dimensionless radial distance r/α for 
various values of g/α and sec/002.0 rad=ω . 
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Figure 3: Dimensionless radial displacement ur/α versus dimensionless radial distance 
r/α for various values of g /α and sec/40rad=ω . 
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Figure 4: Dimensionless radial strain er versus dimensionless radial distance r/α for 
various values of g/α and sec/40rad=ω . 
 
6. Conclusions 
 A boundary element method for solving three-dimensional static, gradient 
elastic problems in the frequency domain has been developed. Microstructural effects 
on the macroscopic behavior of the elastic material behavior have been taken into 
account by means of a simple gradient elastic theory due to Aifantis. 

The equation of motion as well as all the possible boundary conditions 
(classical and non-classical) has been determined with the aid of a variational statement 
of the problem. The fundamental solution and the reciprocity identity of the gradient 
elastic problem have been explicitly determined. Both have been used to establish the 
boundary integral equation of the problem consisting of one equation for the 
displacement and another one for its normal derivative. 

The numerical implementation of the problem is accomplished by discretizing 
the boundary of the problem into quadratic quadrilateral elements and employing 
advanced integration algorithms for the highly accurate evaluation of the singular 
integrals. A representative numerical example has been presented to illustrate the 
method and demonstrate its high accuracy. 
 
Appendix I 
In this Appendix the explicit expressions of the kernels appearing in the integral 
equation (41) are given as follows: 
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The terms of kernel *P~  are given as follows: 
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APPENDIX II 
 In this Appendix the explicit expressions of the kernels appearing in the 
integral equation (43) are given as follows: 
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