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Abstract

This paper presents the implementation of the boundary element method to shape
sensitivity analysis of elastic structures with stress concentrators. An elastic body
which contains a number of voids (internal boundaries), playing the role of stress con-
centrators, is considered. We are interested in calculating the first order sensitivity of
shape–dependent functionals with respect to the shape variation of the body domain.
This task is accomplished using the adjoint variable method. As it has been shown by
Dems and Mróz [10], for a basic transformation (i.e. a translation, a rotation or a scale
change) of the body, the sensitivity of the considered functional takes the form of a
path-independent integral (PII) whose integrand depends on the primary and adjoint
state fields, along an arbitrary path (curve in 2D, surface in 3D), enclosing the trans-
formed stress concentrator (void). It is very important for numerical computations,
because we can compute this integral along the path placed far from the stress concen-
trator to eliminate the negative influence of stress concentrations on the accuracy of
calculations. The boundary element method (BEM) is used to solve both primary and
adjoint problems. Some important cases of adjoint problems related to functionals
are analyzed in the paper. A thorough numerical verification of the proposed method
is performed in this work. The presented method of sensitivity analysis is utilised
in gradient-based optimization and identification problems. Numerical examples of
optimization and identification are shown in this paper.

1 Introduction

The phenomenon of stress concentrations causes serious problems for engineers design-
ing mechanical structures. As widely known, the reason of this phenomenon is usually the
shape of the considered structure – stress concentrations occur in the vicinity of notches,
voids, cracks, material discontinuities. In numerical analysis of elastic bodies, stress con-
centrations are often responsible for the drastic increase of numerical errors. It may be
also observed in the case of sensitivity analysis, where not only stress or displacement
gradients, but also stress derivatives or second order of displacement derivatives are com-
puted. This paper presents a new method of shape sensitivity analysis which overcomes
difficulties arisen from stress concentrations. The method is based on the adjoint variable
approach and uses the boundary element method (BEM) for solving both primary and ad-
joint problems. To decrease numerical error resulting from stress concentrations the idea
of path independent integrals is employed.

The analytical formulation of this concept was elaborated by Dems and Mróz in [10]
who discussed a new class of conservation rules which constituted an extension of the
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class considered by Rice [11] and Bui [3]. The idea of coupling path–independent in-
tegrals and the boundary element method to shape sensitivity analysis and identification
associated with singular and quasi–singular boundary variations was proposed by Bur-
czyński [12] and next extended to crack problems by Burczyński and Polch [2, 1] (see
also [8]) in deterministic cases and by Burczyński [5, 4] for stochastic problems. Now,
we develop this idea for shape sensitivity analysis of voids using boundary element pro-
cedures.

2 Invariant integrals in shape sensitivity analysis

Let Ω ⊂ R
d , (d = 2 or 3) be a domain occupied by an elastic body with a boundaryΓ.

The body is assumed to be loaded only by boundary tractionsp 0 on the partΓp of its
boundary (no body forces occur). As usually, boundary displacementsu 0 are prescribed
on the rest of the boundary –Γu.

We are interested in calculating the first order sensitivity of a shape–dependent func-
tional of the general form

J(Ω) =
∫

Ω

Ψ(σ,u) dΩ +
∫

Γ

h(p,u) dΓ (1)

with respect to the shape variation of the domainΩ, where integrandsΨ andh are
arbitrary differentiable functions of their arguments.

To accomplish this task we use the adjoint variable method. In this method we in-
troduce a new boundary problem – the so called adjoint problem – determined over the
same domainΩ with the same material constants, but with different boundary and loading
conditions :

pa =
∂h

∂u
on Γp , ua = −∂h

∂p
na Γu (2)

and

fa =
∂Ψ
∂u

, εia =
∂Ψ
∂σ

insideΩ (3)

If the functionalJ contains the domain integral of the stress–dependent function, the
adjoint system is loaded with initial strains.

The shape variation of the domainΩ is introduced in the form of a transformation
ϕ : Ω �→ R

d

x∗ = ϕ(x) = x + f(x) (4)

wherex∗ denotes the transformed position of a material pointx ∈ Ω, andf – an in-
finitesimally small (in the sense ofC1(Ω) norm) transformation. Additionally, variations
of boundary conditions must be determined in a way dependent on the shape transforma-
tion f , i.e. δp0 must be prescribed onΓp andδu0 must be prescribed onΓu.
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Under above assumptions, a variation of the functional J defined by (1) can be ex-
pressed as

δJ =
∫

Γ

(Ψδkj + σrijui,k − uai,lσilδkj + uai,kσij)njfk dΓ

+
∫

Γ

[h(δkl − nknl) − uai σijnjnlnk + uai σijnjδkl]fk,l dΓ

+
∫

Γu

(
∂h

∂ui
− σrijnj

)
δui dΓu +

∫
Γp

(
∂h

∂pi
+ uai

)
δpi dΓp

(5)

whereσr = C(εa− εia). This formula contains boundary integrals with integrands con-
taining displacement derivatives. It may result in significant growth of numerical errors,
when integration is performed in the vicinity of stress concentrators. Dems and Mróz
have shown in [10] that under some additional assumptions on functionsΨ andh, equa-
tion (5) can be expressed (for a special set of shape transformations) in a form of a path
independent integral, which allows for integrating far from the stress concentrations and
consequently, decrease the numerical error.

2.1 Particular cases of shape transformation

Consider three cases of the general transformation given by (4): the translation, the rota-
tion and the scale change.

Translation (T) The translation (either finite or infinitesimal) can be determined by a
vectora as

x∗ = Tax = x + a (6)

Rotation (R) In this case we must distinguish between the finite and the infinitesimal
rotation. Both can be parameterized by a vectorω in 3D. An infinitesimal rotation is
given by

x∗ = Rωx = x + ω × x (7)

In the plane case, by puttingω = (0, 0, α) , this formula takes a simpler form

x∗1 = x1 − αx2 , x
∗
2 = x2 + αx1 (8)

Expansion or scale change (E) An infinitesimal expansion is determined (for both spa-
tial and plane cases) by a single numberr as

x∗ = Erx = x + rx = x(1 + r) (9)

Assume, that the body under consideration occupies a multiple connected domainΩ
with a boundary∂Ω = Γ =

⋃n
i=0 Γi, whereΓ0 is the external boundary andΓi for

i > 0 are internal boundaries. Let the external boundary undergoes the transformation
given by (4), whereϕ is one of the three kinds of transformation: the translation (T), the
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rotation (R) or the scale change (expansion E). The boundary conditions prescribed on
theΓ0 are also transformed correspondingly (in the way described in [10]). From now on
we make the following

Assumption 1. In definition (1)Ψ andh are isotropic and homogeneous functions of
their arguments1.

According to [10], the variation of the functional given by (1) can be expressed in this
case as a particular form of (5), namely

δJ = bk(Zϕ
k )Γ0 = bk

∫
Γ0

Zϕk (u,σ, Du,ua,σa, Dua) dΓ0 (10)

wherebk are parameters related to specific transformationsϕ = T,R,E. IntegrandsZ ϕ
k

depend on the state fields of primary and adjoint solutions and take form:
–for the translation:

ZTk = [Ψδkj + σrijui,k + σiju
a
i,k − σpqε

a
pqδkj ]nj (11)

–for the rotation

ZRp = ekpl(Ψδkj + σrijui,k − uai,lσilδkj + uai,kσij)xl + σlju
a
k + σrljuk)nj (12)

–for the expansion

ZE = [(Ψδjl + σrijui,l − uai,pσipδlj + uai,kσij)xl − ξσrijui + (ξ − 2 + d)uai σij ]nj (13)

whered denotes the dimensionality of the problem andξ is the number depending on the
form of the functional (see [10]). It has been proved in [10] that under the assumption 1

(Zϕ
k )S =

∫
S

Zϕk (u,σ, Du,ua,σa, Dua) dS = 0 (14)

for any surface (curve)S within the body that encloses a homogeneous domain. It means,
that integrals(Z)S are path-independent.

2.2 Application of (Z)S integrals to sensitivity analysis of stress con-
centrators

In the above considerations it was assumed, that the external boundary was transformed.
However, it is equivalent to the transformationϕ−1 of an internal boundary (void) with
the external boundary being unchange (Fig. 1). Suppose, that we want to compute the
variation ofJ with respect to the transformationψ of only one part of the internal bound-
ary, sayΓ1 (Fig. 1). EncloseΓ1 in a surfaceS0, so that other voids are left on its other
side (Fig. 1). IntroduceΓ′

0 = Γ \ Γ1 as the external boundary undergoing the equiva-
lent transformationϕ = ψ−1. Then, sensitivity ofJ with respect to the transformation

1In fact, even more specific form ofJ is required when sensitivity with respect to the expansion is considered,
see [10] for details.
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Figure 1: Boundary transformation

of the voidΓ1 equalsDJDϕ = (Z)Γ′
0
. On the other handS = S0 ∪ Γ′

0 is the boundary
of a homogeneous (without voids) and isotropic domain included inΩ, thus, taking into
consideration (14) we have0 = (Z)S = (Z)S0∪Γ′

0
= (Z)S0 + (Z)Γ′

0
and consequently,

(Z)Γ′
0

= −(Z)S0 . Sinceϕ = ψ−1, we haveDJDϕ = −DJ
Dψ and finally

DJ

Dψ
= (Z)S0 (15)

It means, that the sensitivity of the functionalJ is expressed by the path–independent
integral along any arbitrary surface (or contour for 2D problems)S 0 enclosing the stress
concentrators.

3 Boundary element method in shape sensitivity analysis

In order to perform sensitivity analysis one should solve two direct problems: primary
and adjoint problems. For solving both primary and adjoint problems the boundary ele-
ment method (BEM) is used. In this method we discretise and solve a boundary integral
equation of the form

clku
w
k +

∫
Γ

P ∗
lku

w
k dΓ =

∫
Γ

U∗
lkp

w
k dΓ +

∫
Ω

U∗
lkb

w
k dΩ (16)

wherew = p for the primary problem,w = a for the adjoint problem andU ∗
lk, P

∗
lk are

the fundamental Kelvin solutions. According to this notationb pk = 0 andbak depends on
the initial strain field associated with the integrandΨ.

3.1 Problems with initial strains

To solve the adjoint problem given, by (2) and (3), one should introduce initial strains into
the domain. This can be cumbersome and may diminish some advantages of boundary
element method.

In problems with initial strainsεi the field of total strains –ε, which is compatible
with the displacement field byεkl = 1

2 (uk,l + ul,k), satisfies equation

ε = εi + εr (17)
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whereεr denotes the field of elastic strains related to the stress tensorσr by the Hooke’s
law σr = C · εr and thus indirectly connected with the body forces by the equilibrium
conditiondiv σr + b = 0

One of the most widely used method of solving such problems is the fictitious force
method, which has been used in the present work. In this method, we transform problem
with initial strains into the problem with body forces. Defining modified force fieldb ∗ =
− div σi + b, whereσi = Cεi is the initial stress, the Navier’s equation is obtained

L(u) + b∗ = 0 (18)

whereL(u) is the Lame operator. Additionally we must modify the boundary conditions
statingp∗ = p + σi · n as the traction field.

3.2 Particular cases of adjoint problems

Here we present some cases of adjoint problems generated by particular forms of the
functionalJ .

3.2.1 Functionals depending on boundary displacements

One of the simplest of them is the functional given by

J =
∫

Γ

h(u) dΓ =
∫

Γ

[p(x) · u(x)]δ(x − x0)dΓ(x) = p(x0) · u(x0) (19)

which, assuming that|p(x0)| = 1, expresses the projection of the displacement at given
boundary pointx0 on the direction determined by vectorp. The adjoint system for such
a functional is loaded only with a concentrated forcep applied at pointx 0.

3.2.2 Functionals depending on internal stresses

These functionals are defined asJ =
∫
Ω

Ψ(σ) dΩ. As we noticed in the previous section,
the invariance of integrals (11)-(13) is guaranteed under the assumption thatΨ andh are
isotropic and homogeneous functions of their arguments.

This leads to the general form ofΨ as

Ψ(σ) = g(
1
2
· σDσ) (20)

whereg is a homogeneous of orderp,C 1 function andD is an isotropic tensor. Due to the
homogenity condition we haveg(t) = g(1)tp. On the other hand, isotropy ofD yields

Dσ = aσ + b T r(σ)I , (21)

Now we are going to concentrate on three general cases of stress functionals.
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Complementary energy. Under the condition, that only the surface tractions expend
the work on the body, the functionalJ may represent the complementary energy. This is
the case, whereg(t) = t and tensorD is the one from the inverse Hooke’s law :Dσ = ε.
This functional can be expressed as a boundary integral due to

∫
Ω

σε dΩ =
∫
Γ

up dΓ,
which is a very convenient property. In the adjoint problem we haveε ai = ε and thus
σia = Cε = σ. Moreover, it is easy to check thatua = u. Thus, having solved the
primary system we have already known all the fields of the adjoint system.

Integral of the square of equivalent stress In this caseΨ(σ) = 1
2 · σDσ. Initial

strains in the adjoint system are given asεia = Dσ. For particular values ofa, b in (21)
we can getΨ(σ) = σ2

eq whereσeq is the Huber – von Mises equivalent stress. Let us
prove:

Theorem 1. The field of the fictitious body forces related to the initial stress in the adjoint
system of the functionalJ =

∫
Ω

1
2σ ·Dσ dΩ whereD is given by (21) is the gradient of

a harmonic potential.

Proof. Substituting Hooke’s lawσ i = 2µεi + λεi into (21) we obtainσ i = 2µσ +
(2µb+ λa+ λbT r(I))Tr(σ)I which may be rewritten as

σi = cσ + d Tr(σ)I (22)

wherec = 2µ , d = 2µb+ λa+ 2λb. Calculating divergence of both sides of (22) we get

div σi = c div σ + d div[Tr(σ)I] (23)

But σ is the stress field in the primary system, where body forces do not exist and thus
div σ = 0. On the other hand, it is well known, that in such a case∆Tr(σ) = 0 i.e.
Tr(σ) is a harmonic field . Thus, denoting byb i the fictitious force field in the adjoint
system we can state

bi = − div σi = −d gradTr(σ) (24)

which completes the proof.

This theorem is very important from the numerical point of view as it allows to trans-
form the volume integral

∫
Ω
Ulkbk dΩ into the boundary integral using the Galerkin vector

Gkl = 1
8πµrδkl for 3D problems andGkl = − 1

8πµr
2 ln(r)δkl for 2D case (see [7] for de-

tails).
In the case of the complementary energy we were able not only to simplify the solution

of the adjoint problem, but also the value of the functional could be itself expressed as the
boundary integral. Following theorem states, that, it is also possible in this case.

Theorem 2. If tensorD is of the form (20), then
∫

Ω

σDσ dΩ =
∫

Γ

pua dΓ (25)
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Proof. We have2J =
∫
Ω

σDσ dΩ =
∫
Ω

σεi dΩ =
∫
Ω

σ(εi−εr) dΩ =
∫
Ω
σiju

a
i,j dΩ−∫

Ω
σrijui,j dΩ. The last integrals can be rewritten using the Gauss theorem as

∫
Ω

σiju
a
i,j dΩ−

∫
Ω

σrijui,j dΩ = −
∫

Ω

σij,ju
a
i dΩ+

∫
Γ

piu
a
i dΓ+

∫
Ω

σrij,jui dΩ−
∫

Γ

priui dΓ

Sinceσrij,j = 0 and ∂h
∂u = pri = 0 the last equality proves (25).

3.2.3 Integrals of higher powers of equivalent stresses

Settingg(t) = tp in (20) we obtain

Jp =
∫

Ω

(
1
2
· σDσ)p dΩ =

∫
Ω

σ2p
eq dΩ (26)

This functional is connected with well known in functional analysis theL p norm of a

function defined as||f ||p =
(∫

Ω |f |p dΩ)1/p
, for p ≥ 1. This norm has a very convenient

property: if |Ω| <∞ andf is bounded, thenlimp→∞ ||f ||p = max |f(x)|
This allows for approximation of nondifferentiable functionalmax σ eq by differen-

tiableJp. However, there are some limitations for the maximum exponentp. The problem
is, that for cases where the boundaryΓ contains notches, the fieldσ 2

eq is not bounded. It
follows from the Williams expansion (see [15, 14]), that in such casesσ ij is singular of
the typeO(rλ), and−1/2 ≤ λ < 0. Then, the order of singularity of the fieldσ 2p

eq is 2λp,
thus the condition of its integrability yields2λp > −2, which gives

p < −1/λ (27)

Consider now the adjoint system generated by the functional (26). Initial strains are given
by

εi = ∂σΨ = p(
1
2
σDσ)p−1Dσ (28)

This implicates that the field of initial strain and stress has the singularityO(r2pλ−λ).
Hence, the field of fictitious forcesb∗j = σikj,k is singular of typeO(r2pλ−λ−1). As
the expressionU ∗

lk(x, y)bk(y) must be integrable, the order of singularity ofb must be
smaller thanO(r−2) (in 2D) which yields2pλ− λ− 1 > −2 and finally

p <
1
2

(
1 − 1

λ

)
(29)

Note, that inequality (29) is more restrictive than (27) ifλ ∈ [− 1
2 , 0). If only the former

of them is fulfilled, then the functional is properly defined but the related adjoint system
cannot be solved using BEM and fictitious forces method. In the worst case of stress
concentration – the crack,λ = − 1

2 and (29) yields thatp < 3
2
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3.3 Numerical implementation

Practical calculating of(Zϕ)S integrals is straightforward. First, we solve the primary
problem and using obtained results generate data for the adjoint system. After having
solved the latter, we create a contourS enclosing the analysed void (internal bound-
ary). This contour is divided into a finite number of curvilinear segmentsS =

⋃ns

i=1 Si,
each of them parameterized bysi : I �→ Si, whereI = [−1, 1]. Then we inte-
grate the functions (11)–(13) along segmentsS i in the standard way:

∫
Si

z(x) dSi(x) =∫
I
z(si(ξ))|s′i(ξ)| dI(ξ), where the last integral is computed numerically using 10-point

Gauss quadrature.

4 Numerical tests in sensitivity analysis

The aim of this section is to compare sensitivities computed using the path-independent
integral method (denoted asPII) to these obtained by other numerical method of sensi-
tivity analysis. One of these methods (the finite difference method denoted asFD) gives
approximation of the sensitivity of the functionalJ(x) (depending on one argument)x as
dJ
dx ≈ J(x+h)−J(x)

h . This is simple but may be very sensitive to accuracy of computing
J(x). Hence we used more refined technique: instead of computing values of analysed
functional at only two points, we construct the least-squares approximation ofJ in the
vicinity of x – a polynomial of 2-nd degree is used as approximating function. If the
functional is expressed in the form of a volume integral this method is referred to asAPI,
in the case of a boundary integral –APB.

In all examples which will be presented, the material constants are set asG = 8 and
ν = 0.2. The program used to compute them accepted dimensionless2 data, so the unit
choice was implicitly included in the preparing data and the result interpretation .

Example 1. A rectangular plate under concentrated force was considered (Fig.2(b)) with
various shapes of internal void (see also [9],[13]). The functional being analysed is of

(a) for various integration paths (b) for various voids

Figure 2: Tests for displacement functional (Example 1)

the form (19) and expresses a vertical displacement of thex0. Results shown in table 1

2Note, that we consider linear problems.
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Figure 3: Rectangular plate with a tetragonal void (Example 2)

have a very good agreement. Then, for the triangular void (Fig. 2(a)) integrals PII

Table 1:Sensitivities ofJ for various shapes of voids (ex. 1)

Void shape Method Tx ×102 Ty ×102 Rot×102 Exp

circle ( r =1, O = (0,0))
PII -0.1723 -0.1613 -0.5e-5 0.1040
FD -0.1759 -0.1583 0.3e-4 0.1040

ellipse( width x = 0.2,
width y= 1 O= (0,0))

PII -0.1025 -0.0545 0.0152 0.0229
FD -0.1154 -0.0529 0.0144 0.0237

triangle (vert.: (-0.5,0)
(0.5,0) (0, -1)

PII -0.0572 -0.3618 0.1374 0.0125
FD -0.0615 -0.3753 0.1362 0.0126

square( O = (0,0), vert.:(
1,1))

PII -0.2583 -0.2889 -0.1710 0.3050
FD -0.2725 -0.2832 -0.1679 0.3043

were computed along various paths. Results in Table 2 provide a confirmation of the
correctness of the calculations – they should be equal – and they are approximately equal.

Table 2:Integrals PII for various integration contours (ex. 1)
Contour Tx ×103 Ty ×102 Rot×102 Exp×10

2 -0.57195 -0.361796 0.13744 0.124680
3 -0.57189 -0.361800 0.13745 0.124681
4 -0.57192 -0.361798 0.13744 0.124681

Example 2. A rectangular plate shown in Fig. 3 with a tetragonal void is fixed on one side
and loaded by a tangential distributed force of intensity 1 on the other side. First, consider
the functional representing the complementary energy. This functional can be computed
as a boundary integralJΓ = 1

2

∫
Γ pu dΓ as well as a volume integralJΩ = 1

2

∫
Ω σε dΩ.

From tests, which have been performed, it follows that computing the complementary
energy as the volume integral is very time consuming compared to the former way. For
example, when we divided the boundary into 64 elements the value ofJG was computed
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in 35 ms andJΩ – by dividing the interior ofΩ into 480 triangles and using 7 point Gauss
cubature – in 30 s3. It has been also noted, that calculation ofJΓ is far more accurate that
JΩ

Table 3 shows values of sensitivities of the complementary energy computed with the
APB method for various discretizations of the boundary. The same calculations were

Table 3:Sensitivity of the complementary energy (computed as1
2

∫
Γ

pu dΓ by the APB method –
Example 2)

Num. of bound. elem. translation x translation y rotation expansion

32 -0.8618 0.4327 2.0118 7.1337
64 -0.2859 0.5705 2.4190 7.5603
128 -0.2699 0.5598 2.5306 7.6470

performed using the volume integral as the value of this functional. Results are presented
in Table 4. Then, PII method was used to obtain sensitivities. As the integration contour

Table 4:Sensitivity of the complementary energy (computed as1
2

∫
Ω

σε dΩ by the API method –
Example 2)

Number of boundary elements translation x translation y rotation expansion

32 -1.4859 0.2936 1.6148 6.8404
64 -0.2997 0.5950 2.2960 7.4657
128 -0.2690 0.5809 2.4793 7.6020

we used the circle with the centre coinciding with te centre of the rectangle and the radius
1.7. Results are shown in Table 5

Table 5:Sensitivity of complementary energy obtained by PII method (Example 2 2).
Num. of bound. elem. translation x translation y rotation expansion

32 -0.2728 0.6544 2.2076 7.2305
64 -0.2738 0.5936 2.4540 7.5409
128 -0.2708 0.5604 2.5417 7.6336

From these comparison it follows that the least differences occur between results in
Table 5 and 3. Integration over the interior of the domain (Table 4) gives also close results,
but differences are greater, especially when the discretization is coarse. Nevertheless, we
can state, that the API method is quite reliable in this case.

Integral of the square of equivalent stresses The value of this functional equals 1233.6.
In Table 6 sensitivity coefficients obtained by the API method are shown for various
boundary discretization. These results may be compared to the results obtained by the PII
method, shown in table 7

3this does not include the time of solving boundary problem which was identical in both cases – 4.2 s
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Table 6:Sensitivity of
∫
Ω

σ2
eq dΩ computed by the API method (Example 2)

Num. of bound. elem. translation x translation y rotation expansion

32 -59.801 11.700 64.202 273.015
64 -12.051 23.740 91.923 298.777
128 -10.784 23.437 99.195 304.114
210 -10.736 22.321 101.758 306.198

Table 7:Sensitivity of
∫
Ω

σ2
eq dΩ computed by the PII method (Example 2)

Num. of bound. elem. translation x translation y rotation expansion

32 1.56672 8.9914 144.398 309.841
64 -1.65994 13.5948 128.276 306.862
128 -3.63688 13.9315 125.658 310.968
210 -6.54046 15.8507 118.834 308.205

In this case differences are considerably larger than for the complementary energy. It
can be seen, that sensitivities obtained by both methods are getting closer as the boundary
discretization is getting finer – supposedly, they converge to the common limit.

5 Optimization and identification

One of the most important application of sensitivity analysis is optimization and identifi-
cation. Thus, we attempt to apply PII method to optimization problems. However, some
additional difficulties should be overcome in this case.

First, we considered the single, infinitesimal translation, rotation or expansion. If we
want to construct an optimization algorithm, we must determine the design variables and
the way of calculation of the partial derivatives of the functional.

5.1 Design variables

Let us restrict ourselves to plane cases (for simplicity), but almost everything we will state
can be easily generalized for 3D problems. As we have already mentioned, the translation
depends on 2 variables, the rotation depends on 1, the expansion – on 1 variable. Note,
that these three families of transformation generate the group4 of all affine transforma-
tions preserving angles5. It can be easily seen that each of such a transformation can be
uniquely expressed as

A(a1,a2,α,r) = T(a1,a2)OαEr (30)

i.e. as the superposition of the finite expansionErx = erx, the finite rotationOα =(
1 −α
α 1

)
x and the translationTax = a + x with the specified order. To prove, that

4Meant in the strict, algebraic sense.
5When identifying the plane with the field of complex numbers, they are conformal transformationsz �→

az + b
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transformations of the form (30) constitutes a group, one can use the equalityAT a =
TAaA holding for any linear transformationA and translationTa. Note that the expansion
and the rotation used in (30) have the center in0, but any finite rotation or expansionϕ
with an arbitrary centrex0 can be expressed as a superposition of translation and the
corresponding transformationA with centre in the0 according toϕ(x) = x 0 + A(x −
x0) = x0 +Ax0 +Ax = Tx0+Ax0A(x).

Now, we are at the position, to determine how the shape of the domain is connected
with design variables(a1, a2, α, r). Let Γi be an arbitrary internal boundary (void), this
untransformed configuration will be treated as the reference configuration. The shape of
the domainΩ determined by the vector(a1, a2, α, r) is the shape withΓi transformed by
A(a1,a2,α,r) in (30) asΓ′

i = A(a1,a2,α,r)Γi .

5.2 Derivatives with respect to design variables

Formulas (10)– (13) express sensitivities of the functionalJ with respect to the single
transformation. However, we need derivatives of this functional with respect to the vari-
ablesa1, a2, α, r. In order to obtain them, we must express the small increase of the
parametervi in the vectorv = (a1, a2, α, r) as the small transformation. Thus we
haveTaOα+δαEr = OδαTbOαEr whereb = O−1

δα a for the rotation parameter and
TaOαEr+δr = EδrT−δraTaOαEr for the expansion parameter. This leads to expres-
sions for partial derivatives ofJ as

∂J

∂ai
=

DJ

DTai

, for i = 1, 2 (31)

∂J

∂α
=

DJ

DOα
+

DJ

DTa1

a2 − DJ

DTa2

a1 (32)

∂J

∂r
=

DJ

DEr
− DJ

DTa1

a1 − DJ

DTa2

a2 (33)

where ∂J
∂ai

, ∂J
∂α and ∂J

∂r denotes partial derivatives ofJ , whereas DJ
DTai

, DJ
DOα

and DJ
DEr

denotes sensitivities of the functionalJ with respect to corresponding infinitesimal trans-
formation. For more detailed derivation of (31)– (31) see [6].

5.3 Choice of optimization algorithm

PII method of sensitivity analysis may be applied in any optimization algorithm which
uses the gradient of the optimized functional. In all examples presented in this paper,
we used the conjugate gradient method. For constrained problems the penalty function
method is applied.

5.4 Examples of optimization

Example 3. The plate shown on the Figure 4 has been optimized with respect to the
following functionals

1. Complementary energyJ = 1
2

∫
Γ pu dΓ,
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Figure 4: Structure from Example 3

2. Stress–dependent functionalJ =
∫
Ω

σ2
eq dΩ,

In all these cases there has been imposed the lower bound on the expansion parameter
asr ≥ ln 0.5.

(a) After minimization of
∫
Ω

σ2
eq dΩ (b) After minimization of the complementary

energy

Figure 5: Optimized structure from Example 3

Minimization of the complementary energy

Initial value : 0.85
Final value: 0.82
Calls of the objective function: 147
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p = 1p = 1

5 5

1

1

0.5

45
o

2

2

Figure 6: Structure from Example 4

Iterations of the main algorithm: 10
Computation time (Intel Celeron 433): 20 min.
Final shape parameters: (2.281, 2.280, -0.585, -0.69315 (ln 0.5)

We can see that the lower bound for the expansion has been attained, which suggests
that algorithm tended to make the void as small as possible to decrease the compliance of
the structure.

Minimization of
∫
Ω
σ2
eq dΩ

Initial value : 33.73
Final value: 32.53
Calls of the objective function: 154
Iterations of the main algorithm: 9
Computation time (Intel Celeron 433): 5h
Final shape parameters: (2.353, 2.326, -1.238, -0.69337 (ln 0.5)

Example 4. A rectangular plate (Figure 6) with the triangular void is subjected to the
tension load. The aim is to change the location of this void to minimize stresses in the
plate. For that purpose minimization of the functionalJp =

∫
Ω
σ3
eq dΩ (thusp = 1.5) is

performed. Additionally, the size of the void cannot be decreased (i.e.r > 0).

Start: (0, 0, 0, 0)
Initial value ofJp: 43.75
Fianal value ofJp: 40.95
Calls of the objective function : 1186
Iterations of the main algorithm 6
Final parameters: (-0.0011, -0.0087, -0.794, -0.01)

The stress distribution in the initial and optimized structure is presented at Figure 7(a)
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(a) before optimization (b) after optimization
∫
Ω σ3

eq dΩ

Figure 7: Distribution of th equivalent stress (Example 4)

5.5 Identification

For identification of shape and location of the voids we used the functional

J =
∫

Γ

h(u, û) dΓ =
1
2

∫
Γ0

|u − û|2 dΓ0 (34)

expressing the distance between the measured displacement field on the external boundary
û and the calculated oneu. The adjoint problem is loaded by the boundary traction
pa(x) = u(x) − û(x)

Example 5. The structure from Example 2 is considered again (Figure 3).
The actual void parameters are (-1, 0.5, 2, -0.8). Identification was performed using

two initial configuration.

Start: (0, 0, 0, 0)
Initial value of functional (34) : 5.72516
Final value : 4.511e-05
Calls of the objective function: 1186
Iterations of the main algorithm 127
Found location: (-1.11123, 0.37997, -1.22047, -0.79172)

For that initial guess obtained parameters constitute a local minimum of the objective
function.

Table 8:Identification for starting point (0,0,0,0)
Iteration parameter value ofJ calls ofJ

10 (-0.802, 0.375, -0.881, -0.848) 0.00082 94
20 ( -1.139, 0.378, -0.859, -0.864) 0.00020 186
50 (-1.102, 0.388, -1.135, -0.808) 5.239e-05 469
100 (-1.113, 0.380, -1.218, -0.792) 4.515e-05 928
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Figure 8: Identification of void (Example 5)

For another starting point we obtain the global minimum:

Start: (2, -0.5, 2.5, 0.2)
Initial value of functional (34) : 7.02
Final value : 4.511e-17
Calls of the objective function: 1902
Iterations of the main algorithm 202
Found location: (-1.0, 0.5, 2, -0.8)

Table 9:Identification for starting point (2, -0.5, 2.5, 0.2)
Iteration parameter value ofJ calls ofJ

10 (-1.021, 0.216, 2.888, -0.793) 0.00138 103
20 (-1.178, 0.383, 2.493, -0.923) 0.00048 199
50 (-1.033, 0.487, 2.143, -0.859) 1.04e-05 483
100 (-1.0006, 0.5003, 2.003, -0.801) 4.83e-09 946

Example 6. A stress concentrator in the form of a triangular void in the structural element
(Figure 6 ) is being identified.

The actual configuration of the void is given by the vector (0.2, -1.5, 2, -0.6). Identi-
fication was performed starting from two initial points.

Start: (0, 0, 0, 0)
Initial value of functional (34) : 0.0685
Final value : 1.655e-06
Calls of the objective function: 597
Iterations of the main algorithm 59
Found location: (-0.067, -2.117, -1.148, -0.605)
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Actual location:

(0.2, -1.5, 2, -0.6)

Initial location
(1.8, 0.5, 3, 0)

Initial location
(0, 0, 0, 0)

Found location:
(-0.0670, -2.1173, -1.1476, -0.6045)

P =1

P =1

Figure 9: Structural element: identification of triangular void

Table 10:Structural element: Identification for starting point (0,0,0,0)
Iteration parameter value ofJ calls ofJ

10 (0.017, -1.919, -1.155, -0.643) 0.00033 119
20 (-0.042, -2.006, -1.102, -0.591) 1.35e-05 221
50 (-0.065, -2.111, -1.143, -0.604) 1.70e-06 518

The found location is at a local minimum of the functionalJ .
For another starting point we attain the global minimum:

Start: (1.8, 0.5, 3, 0)
Initial value : 0.04060742
Final value : 6.90973e-17
Calls of the objective function : 974
Iterations of the main algorithm: 95
Found location: (0.2, -1.5, 2, -0.6)

Other attempts of identification were also performed for various starting points and
for different load conditions. Many of them ended in a local minimum of the functional.
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Table 11:Structural element: Identification for starting point (1.8, 0.5, 3, 0)
Iteration parameter value ofJ calls ofJ

10 (0.194, -0.315, 2.236, -0.345) 0.00038 114
20 ( 0.123, -0.894, 2.233, -0.502) 0.00011 221
30 (0.192, -1.491, 2.018, -0.6003) 6.1e-7 329
50 (0.199, -1.496, 2.001, -0.5999) 1.70e-08 529

6 Conclusions

In the present work, a new method of shape sensitivity analysis for stress concentrators
based on BEM is presented. This method allows for avoiding numerical difficulties arising
from the presence of stress concentration in the vicinity of geometry singularities. In
many numerical tests this method proved to be able to give reliable results for many
types of functionals depending on mechanical quantities. These tests have shown that
the accuracy of computations is much higher for functionals of the form of the boundary
integral than the volume integral. For functionals expressed by the volume integral the
accuracy is considerably worse, and the time of calculation is much larger. This is caused
by the necessity of solving the complicated adjoint system and the fact, that calculation
of the volume integral is much more time–consuming than the boundary one. However,
theorems 1 and 2 allow to overcome these drawbacks for some types of functionals. It
has been also shown, that the presented method of sensitivity analysis can be successfully
applied in optimization and identification algorithms.
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