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Abstract

This paper presents the implementation of the boundary element method to shape
sensitivity analysis of elastic structures with stress concentrators. An elastic body
which contains a number of voids (internal boundaries), playing the role of stress con-
centrators, is considered. We are interested in calculating the first order sensitivity of
shape—dependent functionals with respect to the shape variation of the body domain.
This task is accomplished using the adjoint variable method. As it has been shown by
Dems and Mréz [10], for a basic transformation (i.e. a translation, a rotation or a scale
change) of the body, the sensitivity of the considered functional takes the form of a
path-independent integral (PIl) whose integrand depends on the primary and adjoint
state fields, along an arbitrary path (curve in 2D, surface in 3D), enclosing the trans-
formed stress concentrator (void). It is very important for numerical computations,
because we can compute this integral along the path placed far from the stress concen-
trator to eliminate the negative influence of stress concentrations on the accuracy of
calculations. The boundary element method (BEM) is used to solve both primary and
adjoint problems. Some important cases of adjoint problems related to functionals
are analyzed in the paper. A thorough numerical verification of the proposed method
is performed in this work. The presented method of sensitivity analysis is utilised
in gradient-based optimization and identification problems. Numerical examples of
optimization and identification are shown in this paper.

1 Introduction

The phenomenon of stress concentrations causes serious problems for engineers design-
ing mechanical structures. As widely known, the reason of this phenomenon is usually the
shape of the considered structure — stress concentrations occur in the vicinity of notches,
voids, cracks, material discontinuities. In numerical analysis of elastic bodies, stress con-
centrations are often responsible for the drastic increase of numerical errors. It may be
also observed in the case of sensitivity analysis, where not only stress or displacement
gradients, but also stress derivatives or second order of displacement derivatives are com-
puted. This paper presents a new method of shape sensitivity analysis which overcomes
difficulties arisen from stress concentrations. The method is based on the adjoint variable
approach and uses the boundary element method (BEM) for solving both primary and ad-
joint problems. To decrease numerical error resulting from stress concentrations the idea
of path independent integrals is employed.

The analytical formulation of this concept was elaborated by Dems and Mréz in [10]
who discussed a new class of conservation rules which constituted an extension of the
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class considered by Rice [11] and Bui [3]. The idea of coupling path—independent in-
tegrals and the boundary element method to shape sensitivity analysis and identification
associated with singular and quasi—singular boundary variations was proposed by Bur-
czyhski [12] and next extended to crack problems by Burftski and Polch [2, 1] (see

also [8]) in deterministic cases and by Buréski [5, 4] for stochastic problems. Now,

we develop this idea for shape sensitivity analysis of voids using boundary element pro-
cedures.

2 Invariant integralsin shape sensitivity analysis

LetQ c R¢, (d = 2 or 3) be a domain occupied by an elastic body with a bounbary
The body is assumed to be loaded only by boundary tractidhen the partl’,, of its
boundary (no body forces occur). As usually, boundary displacenaghtse prescribed
on the rest of the boundaryl=~, .

We are interested in calculating the first order sensitivity of a shape—dependent func-
tional of the general form

J(Q):/Q\I/(a,u) dQJr/Fh(p,u)dF (1)

with respect to the shape variation of the dom@inwhere integrand¥ andh are
arbitrary differentiable functions of their arguments.

To accomplish this task we use the adjoint variable method. In this method we in-
troduce a new boundary problem — the so called adjoint problem — determined over the
same domaif with the same material constants, but with different boundary and loading
conditions :

. oh )
P = onl',, u :_6‘_p nal, (2

and ov ov
J=oo . &= insideq 3

If the functionalJ contains the domain integral of the stress—dependent function, the
adjoint system is loaded with initial strains.
The shape variation of the domaihis introduced in the form of a transformation
@ : Q- Re
z* = p(x) =z + f(x) (@)

wherex* denotes the transformed position of a material paint 2, and f — an in-
finitesimally small (in the sense ¢! (2) norm) transformation. Additionally, variations

of boundary conditions must be determined in a way dependent on the shape transforma-
tion f, i.e. 5p° must be prescribed dn, andéu” must be prescribed dn,,.
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Under above assumptions, a variation of the functional J defined by (1) can be ex-
pressed as

0J = /(\I/5k] -+ afjuiyk - uf,lail(;kj -+ uf,kaij)njfk dr’
T

—+ /[h((skl — nknl) — ufoijnjnmk + ufoijnjékl]fkyl dar (5)
T

oh oh
— —oln; | du; dly, ¢ op; dT,
-l—/Fu (aui awnj) U +/r (5‘pi +uz) J2 »

P

whereo” = C(e® — £'¢). This formula contains boundary integrals with integrands con-
taining displacement derivatives. It may result in significant growth of numerical errors,
when integration is performed in the vicinity of stress concentrators. Dems and Mréz
have shown in [10] that under some additional assumptions on funcli@sl ., equa-

tion (5) can be expressed (for a special set of shape transformations) in a form of a path
independent integral, which allows for integrating far from the stress concentrations and
consequently, decrease the numerical error.

2.1 Particular casesof shape transformation

Consider three cases of the general transformation given by (4): the translation, the rota-
tion and the scale change.

Trandation (T) The translation (either finite or infinitesimal) can be determined by a
vectora as
- =Tgx=x+a (6)

Rotation (R) In this case we must distinguish between the finite and the infinitesimal
rotation. Both can be parameterized by a veaboin 3D. An infinitesimal rotation is
given by

r*=Rox=x+wxzx (7

In the plane case, by putting = (0, 0, «) , this formula takes a simpler form

T =X —Qxe, TH =Ty + axy (8)

Expansion or scalechange(E) An infinitesimal expansion is determined (for both spa-
tial and plane cases) by a single numbess

e =Ex=xz+re=x(l+r) 9)

Assume, that the body under consideration occupies a multiple connected demain
with a boundanp) = T' = U?ZO I';, wherel'y is the external boundary arid; for
i > 0 are internal boundaries. Let the external boundary undergoes the transformation
given by (4), wherep is one of the three kinds of transformation: the translation (T), the
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rotation (R) or the scale change (expansion E). The boundary conditions prescribed on
thel’( are also transformed correspondingly (in the way described in [10]). From now on
we make the following

Assumption 1. In definition (1) ¥ andh are isotropic and homogeneous functions of
their arguments

According to [10], the variation of the functional given by (1) can be expressed in this
case as a particular form of (5), namely

0J =bi(Z9)r, = bk/ Z¢(u,0,Du,u, 0% Du®)dl (10)

1)

whereb;, are parameters related to specific transformatjors T, R, E. IntegrandsZ
depend on the state fields of primary and adjoint solutions and take form:
—for the translation:

Z,CT = [Udy; + Ufjum + oijugy — quszqékj]nj (11)
—for the rotation

R r .
Zp = ekpl(\I/(Skj -+ szjuz-,k - uﬁloilékj -+ Uﬁkgij)xl -+ O’lju% -+ ozjuk)nj (12)

—for the expansion
ZP = (W65 + ofjuis — uf ,oipiy + uf 0551 — Eofyui + (€ — 2+ d)ufoijln; (13)

whered denotes the dimensionality of the problem &rid the number depending on the
form of the functional (see [10]). It has been proved in [10] that under the assumption 1

(Z20)s = /SZ,f(u,o',Du,u“,aa,Du“) dsS =0 (14)

for any surface (curvey within the body that encloses a homogeneous domain. It means,
that integralg Z) s are path-independent.

2.2 Application of (Z)s integralsto sensitivity analysisof stresscon-
centrators

In the above considerations it was assumed, that the external boundary was transformed.
However, it is equivalent to the transformatiprr® of an internal boundary (void) with

the external boundary being unchange (Fig. 1). Suppose, that we want to compute the
variation of J with respect to the transformatighof only one part of the internal bound-

ary, sayl'; (Fig. 1). Enclosd™; in a surfaceSy, so that other voids are left on its other

side (Fig. 1). Introduc&( = I' \ T'; as the external boundary undergoing the equiva-
lent transformatiorp = v ~!. Then, sensitivity of] with respect to the transformation

Lin fact, even more specific form ofis required when sensitivity with respect to the expansion is considered,
see [10] for details.
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Figure 1: Boundary transformation

of the voidT"; equalsg—g = (Z)r,. On the other hand = S, U I is the boundary
of a homogeneous (without voids) and isotropic domain included, ithus, taking into
consideration (14) we have= (2)s = (2)s,ur; = (£)s, + (Z)r,and consequently,

(2)r, = —(2)s,. Sincep = ¢!, we haveZ = — 57 and finally
DJ

It means, that the sensitivity of the functionalis expressed by the path-independent
integral along any arbitrary surface (or contour for 2D problefiskenclosing the stress
concentrators.

3 Boundary element method in shape sensitivity analysis

In order to perform sensitivity analysis one should solve two direct problems: primary

and adjoint problems. For solving both primary and adjoint problems the boundary ele-
ment method (BEM) is used. In this method we discretise and solve a boundary integral
equation of the form

cpul + / Pl dl = / Uppl dT + / U7l (16)
I I Q

wherew = p for the primary problemw = « for the adjoint problem an#/ };., P;;. are
the fundamental Kelvin solutions. According to this notatign= 0 andbj, depends on
the initial strain field associated with the integraihd

3.1 Problemswith initial strains

To solve the adjoint problem given, by (2) and (3), one should introduce initial strains into
the domain. This can be cumbersome and may diminish some advantages of boundary
element method.

In problems with initial straing’ the field of total strains -, which is compatible
with the displacement field by, = %(um + uy 1), satisfies equation

e=¢c+¢e" a7)
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wheree” denotes the field of elastic strains related to the stress terisby the Hooke’s
law o = C' - €" and thus indirectly connected with the body forces by the equilibrium
conditiondive”™ + b =0

One of the most widely used method of solving such problems is the fictitious force
method, which has been used in the present work. In this method, we transform problem
with initial strains into the problem with body forces. Defining modified force field=
—dive! + b, wherea® = Ce' is the initial stress, the Navier's equation is obtained

L(u)+b* =0 (18)

whereL(u) is the Lame operator. Additionally we must modify the boundary conditions
statingp* = p + o - n as the traction field.

3.2 Particular casesof adjoint problems

Here we present some cases of adjoint problems generated by particular forms of the
functional J.

3.21 Functionalsdepending on boundary displacements

One of the simplest of them is the functional given by

J= /F h(w) dT" = /F p(2) - w(@)]5(z — 20)dl(x) = p(xo) - u(ze)  (19)

which, assuming thdp(zo)| = 1, expresses the projection of the displacement at given
boundary pointe on the direction determined by vectar The adjoint system for such
a functional is loaded only with a concentrated fopcapplied at pointe .

3.2.2 Functionals depending on internal stresses

These functionals are defined.as- |, ¥ (o) dQ2. As we noticed in the previous section,
the invariance of integrals (11)-(13) is guaranteed under the assumptioh #rath are
isotropic and homogeneous functions of their arguments.

This leads to the general form @&f as

U(o) = g(% -oDo) (20)

whereg is a homogeneous of ordgrC' ! function andD is an isotropic tensor. Due to the
homogenity condition we havgt) = ¢g(1)tP. On the other hand, isotropy &1 yields

Do =a0c+bTr(o)l, (21)

Now we are going to concentrate on three general cases of stress functionals.
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Complementary energy. Under the condition, that only the surface tractions expend
the work on the body, the functiondlmay represent the complementary energy. This is
the case, wherg(t) = ¢ and tensoD is the one from the inverse Hooke's lawDo = .
This functional can be expressed as a boundary integral dyg tee dQ2 = [ updT,
which is a very convenient property. In the adjoint problem we hate= e and thus
o' = Ce = o. Moreover, it is easy to check that® = w. Thus, having solved the
primary system we have already known all the fields of the adjoint system.

Integral of the square of equivalent stress In this case¥(o) = 1 - oDo. Initial
strains in the adjoint system are givensd$ = Do . For particular values af, b in (21)

we can geW (o) = o2, whereo, is the Huber — von Mises equivalent stress. Let us
prove:

Theorem 1. The field of the fictitious body forces related to the initial stress in the adjoint
system of the functional = fQ %0‘ - Do d2 whereD is given by (21) is the gradient of
a harmonic potential.

Proof. Substituting Hooke’s lawr? = 2ue’ + A&’ into (21) we obtaino? = 2uo +
(2ub + Aa + ATr(I))Tr(o)I which may be rewritten as

o' =co+dTr(e)l (22)
wherec = 2, d = 2ub + Aa + 2Ab. Calculating divergence of both sides of (22) we get
dive' = ¢ dive +d div[Tr(e)I] (23)

But o is the stress field in the primary system, where body forces do not exist and thus
dive = 0. On the other hand, it is well known, that in such a casEr(o) = 0 i.e.
Tr(o) is a harmonic field . Thus, denoting by’ the fictitious force field in the adjoint
system we can state

b’ = —div o' = —d grad Tr(o) (24)

which completes the proof. O

This theorem is very important from the numerical point of view as it allows to trans-
form the volume integra, U;:.by. dS2 into the boundary integral using the Galerkin vector
G = ﬁrdkl for 3D problems andy;; = —ﬁrQ In(r)dy; for 2D case (see [7] for de-
tails).

Inthe case of the complementary energy we were able not only to simplify the solution
of the adjoint problem, but also the value of the functional could be itself expressed as the

boundary integral. Following theorem states, that, it is also possible in this case.

Theorem 2. If tensorD is of the form (20), then

/UDO'dQ:/pu“ dr (25)
Q r
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Proof. We have2J = [, 0DodQ = [,oe'dQ = [, o(e'—€")dQ = [, oijuf,; dQ—
Jq oijui ; dQ. The last integrals can be rewritten using the Gauss theorem as

/ Oiju dQ /JZ’]uw d$) = 7/ O'ijyju? dQ+/ pzuf dI‘+/ ”]uz dQ)— /p;uz dar’
Q Q Q r

Sinceo]; ; =0 and% = pi = 0 the last equality proves (25). O

3.2.3 Integralsof higher powersof equivalent stresses
Settingg(t) = t? in (20) we obtain

1
Jp = / (5-oDo)"d = / o2k dS) (26)
Q Q

This functional is connected with well known in functional analysis thenorm of a

function defined a§ f||, = ([, | |7 d?) "? for p > 1. This norm has a very convenient
property: if|Q] < co andf is bounded, thetim,, . || f||, = max | f(z)|

This allows for approximation of nondifferentiable functiomahx o ., by differen-
tiableJ,. However, there are some limitations for the maximum expon€efte problem
is, that for cases where the bound&rgontains notches, the fietd?, is not bounded. It
follows from the Williams expansion (see [15, 14]), that in such casgss singular of
the typeO(r*), and—1/2 < X < 0. Then, the order of singularity of the fietcf? is 2\p,
thus the condition of its integrability yields\p > —2, which gives

p<—1/A (27)

Consider now the adjoint system generated by the functional (26). Initial strains are given
by
. 1
e' =0, = p(§a'D0')p_1D0' (28)

This implicates that the field of initial strain and stress has the singul@xity?*~*).
Hence, the field of fictitious forcels; = oj, is singular of typeO(r?"*~*~1). As
the expressioV};, (x, y)bx(y) must be mtegrable the order of singularitytomust be
smaller tharO(r~2) (in 2D) which yields2p\ — A — 1 > —2 and finally

p<%<1§> (29)

Note, that inequality (29) is more restrictive than (27)iE [— %, 0). If only the former

of them is fulfilled, then the functional is properly defined but the related adjoint system
cannot be solved using BEM and fictitious forces method. In the worst case of stress
concentration — the crack,= — 1 and (29) yields thap < 2
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3.3 Numerical implementation

Practical calculating of2¥)s integrals is straightforward. First, we solve the primary
problem and using obtained results generate data for the adjoint system. After having
solved the latter, we create a contatirenclosing the analysed void (internal bound-
ary). This contour is divided into a finite number of curvilinear segménts |2, S;,

each of them parameterized by : I — S;, wherel = [-1,1]. Then we inte-
grate the functions (11)—(13) along segme$itsn the standard way]’ s, z(x)dS;(z) =

J; z(si(8))]s;(€)| dI(€), where the last integral is computed numerically using 10-point
Gauss quadrature.

4 Numerical testsin sengitivity analysis

The aim of this section is to compare sensitivities computed using the path-independent
integral method (denoted &31) to these obtained by other numerical method of sensi-
tivity analysis. One of these methods (the finite difference method denoteld)agives
approximation of the sensitivity of the function&(z) (depending on one argumentas
U ~ Jeth-J@)  This is simple but may be very sensitive to accuracy of computing
J(x). Hence we used more refined technique: instead of computing values of analysed
functional at only two points, we construct the least-squares approximatigrirothe
vicinity of x — a polynomial of 2-nd degree is used as approximating function. If the
functional is expressed in the form of a volume integral this method is referrediBlas
in the case of a boundary integrahPB.

In all examples which will be presented, the material constants are éétas and
v = 0.2. The program used to compute them accepted dimensicnia¢a, so the unit
choice was implicitly included in the preparing data and the result interpretation .

Examplel. Arectangular plate under concentrated force was considered (Fig.2(b)) with
various shapes of internal void (see also [9],[13]). The functional being analysed is of

X p=1 X p=1
5 1.5
777777777777777777777777777777777777777 tOuJ.

gontour = s

/ A . h 8

4 it ' 4 o
N \ v / Loy !oa

A [ '

N\ S/ PP VLA

,,,,,, - i Integration path
contour4 T
10 10
(a) for various integration paths (b) for various voids

Figure 2: Tests for displacement functional (Example 1)

the form (19) and expresses a vertical displacement of theResults shown in table 1

2Note, that we consider linear problems.
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Figure 3: Rectangular plate with a tetragonal void (Example 2)

have a very good agreement. Then, for the triangular void (Fig. 2(a)) integrals PlI

Table 1:Sensitivities ofJ for various shapes of voids (ex. 1)

[ Void shape | Method [ Txx10®> | Ty x10°> | Rotx10> [ Exp |

el ot 000 = 01723 | -0.1613 | 0565 | 0.1040

(r=1,0=(0.0) FD 0.1759 | -0.1583 | 0.3e-4 0.1040
cliipsq width x = 02, || Pl 01025 | -0.0545 | 0.0152 0.0229
width y= 1 0= (0,0)) FD 0.1154 | -0.0529 | 0.0144 0.0237
triangle wert: (05.0) || PN 00572 | -0.3618 | 0.1374 0.0125
(0.5,0) (0, -1) FD 0.0615 | -0.3753 | 0.1362 0.0126
square( o = (00), very( || PN 02583 | -0.2889 | -0.1710 | 0.3050
11) FD 02725 | -0.2832 | -0.1679 | 0.3043

were computed along various paths. Results in Table 2 provide a confirmation of the
correctness of the calculations —they should be equal — and they are approximately equal.

Table 2:Integrals PII for various integration contours (ex. 1)

| Contour | Tx x10° | Ty x10? | Rotx10? | Expx10 |
2 -0.57195 -0.361796 0.13744 0.124680
3 -0.57189 -0.361800 0.13745 0.124681
4 -0.57192 -0.361798 0.13744 0.124681

Example2. Arectangular plate shown in Fig. 3 with a tetragonal void is fixed on one side
and loaded by a tangential distributed force of intensity 1 on the other side. First, consider
the functional representing the complementary energy. This functional can be computed
as a boundary integralr = 1 [, pudl as well as a volume integral, = 1 [, oe dQ.

From tests, which have been performed, it follows that computing the complementary
energy as the volume integral is very time consuming compared to the former way. For
example, when we divided the boundary into 64 elements the valiig: @fas computed
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in 35 ms and/, — by dividing the interior of2 into 480 triangles and using 7 point Gauss
cubature — in 30% It has been also noted, that calculatior/efis far more accurate that
Jo

Table 3 shows values of sensitivities of the complementary energy computed with the
APB method for various discretizations of the boundary. The same calculations were

Table 3:Sensitivity of the complementary energy (computed gs pu dI' by the APB method —
Example 2)
| Num. of bound. elem]| translation x| translation y| rotation | expansion]|

32 -0.8618 0.4327| 2.0118 7.1337
64 -0.2859 0.5705| 2.4190 7.5603
128 -0.2699 0.5598| 2.5306 7.6470

performed using the volume integral as the value of this functional. Results are presented
in Table 4. Then, Pll method was used to obtain sensitivities. As the integration contour

Table 4:Sensitivity of the complementary energy (computeg g, o d©2 by the API method —
Example 2)

| Number of boundary element} translation x| translation y| rotation | expansion|

32 -1.4859 0.2936| 1.6148 6.8404
64 -0.2997 0.5950| 2.2960 7.4657
128 -0.2690 0.5809| 2.4793 7.6020

we used the circle with the centre coinciding with te centre of the rectangle and the radius
1.7. Results are shown in Table 5

Table 5:Sensitivity of complementary energy obtained by Pll method (Example 2 2).
Il Num. of bound. elem]| translation x| translation y| rotation | expansion]|

32 -0.2728 0.6544 | 2.2076 7.2305
64 -0.2738 0.5936| 2.4540 7.5409
128 -0.2708 0.5604 | 2.5417 7.6336

From these comparison it follows that the least differences occur between results in
Table 5 and 3. Integration over the interior of the domain (Table 4) gives also close results,
but differences are greater, especially when the discretization is coarse. Nevertheless, we
can state, that the APl method is quite reliable in this case.

Integral of thesquareof equivalent stresses  The value of this functional equals 1233.6.

In Table 6 sensitivity coefficients obtained by the APl method are shown for various
boundary discretization. These results may be compared to the results obtained by the PII
method, shown in table 7

3this does not include the time of solving boundary problem which was identical in both cases —4.2 s
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Table 6:Sensitivity of [, o2, d©2 computed by the APl method (Example 2)
[ Num. of bound. elem]| translation x| translation y| rotation | expansion|

32 -59.801 11.700| 64.202 273.015
64 -12.051 23.740| 91.923 298.777
128 -10.784 23.437| 99.195 304.114
210 -10.736 22.321| 101.758| 306.198

Table 7:Sensitivity of [, o2, dQ computed by the PIl method (Example 2)
[ Num. of bound. elem]| translation x| translation y| rotation | expansion|

32 1.56672 8.9914 | 144.398| 309.841
64 -1.65994 13.5948| 128.276| 306.862
128 -3.63688 13.9315| 125.658| 310.968
210 -6.54046 15.8507| 118.834| 308.205

In this case differences are considerably larger than for the complementary energy. It
can be seen, that sensitivities obtained by both methods are getting closer as the boundary
discretization is getting finer — supposedly, they converge to the common limit.

5 Optimization and identification

One of the most important application of sensitivity analysis is optimization and identifi-
cation. Thus, we attempt to apply PIl method to optimization problems. However, some
additional difficulties should be overcome in this case.

First, we considered the single, infinitesimal translation, rotation or expansion. If we
want to construct an optimization algorithm, we must determine the design variables and
the way of calculation of the partial derivatives of the functional.

5.1 Design variables

Let us restrict ourselves to plane cases (for simplicity), but almost everything we will state
can be easily generalized for 3D problems. As we have already mentioned, the translation
depends on 2 variables, the rotation depends on 1, the expansion — on 1 variable. Note,
that these three families of transformation generate the grotipll affine transforma-
tions preserving anglés It can be easily seen that each of such a transformation can be
uniquely expressed as

A(al,ag,a,r) = T(al,az)OaET (30)

i.e. as the superposition of the finite expansioje = "z, the finite rotationO, =
(1)« and the translatiof,z = a + = with the specified order. To prove, that

a 1

4Meant in the strict, algebraic sense.
SWhen identifying the plane with the field of complex numbers, they are conformal transformatiens
az+b
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transformations of the form (30) constitutes a group, one can use the eqd@lify=

T 44 A holding for any linear transformatiofiand translatiofl’, . Note that the expansion
and the rotation used in (30) have the cente,itbut any finite rotation or expansian

with an arbitrary centrec, can be expressed as a superposition of translation and the
corresponding transformatiof with centre in thed according top(x) = ¢ + A(x —

l‘()) =9+ Al‘() + Az = TngrAng(x)-

Now, we are at the position, to determine how the shape of the domain is connected
with design variablega1, as, o, 7). Let'; be an arbitrary internal boundary (void), this
untransformed configuration will be treated as the reference configuration. The shape of
the domairf) determined by the vectdt 1, as, a, ) is the shape witl'; transformed by
A(al,az,a,r) in (30) aSFg = A(al,ag,a,r)ri .

5.2 Derivativeswith respect to design variables

Formulas (10)— (13) express sensitivities of the functiohalith respect to the single
transformation. However, we need derivatives of this functional with respect to the vari-
ablesay, as, a, . In order to obtain them, we must express the small increase of the
parametew; in the vectorv = (ay, a2, a,r) as the small transformation. Thus we
have T,Oun+50 Er = 050100 E, whereb = Ogala for the rotation parameter and
ToO0Erisr = Esi/T—_s5raT.00 E, for the expansion parameter. This leads to expres-
sions for partial derivatives of as

gi:%,forizlj (31)
% - DD(iY * DDTi w2 DDTi “ (32)
o = DR DI DrL @)
where 82, 22 and 9 denotes partial derivatives of, whereasz2-, 4%~ and 52

denotes sensitivities of the functionalith respect to correspondiné infinitesimal trans-
formation. For more detailed derivation of (31)— (31) see [6].

5.3 Choice of optimization algorithm

Pl method of sensitivity analysis may be applied in any optimization algorithm which
uses the gradient of the optimized functional. In all examples presented in this paper,
we used the conjugate gradient method. For constrained problems the penalty function
method is applied.

5.4 Examplesof optimization

Example 3. The plate shown on the Figure 4 has been optimized with respect to the
following functionals

1. Complementary energy = %fr pudl’,
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ai .|Iu

[ i

Figure 4: Structure from Example 3

2. Stress—dependent functionak= [, o2, dQ,

In all these cases there has been imposed the lower bound on the expansion parameter
asr > In0.5.

(a) After minimization off, agq dQ2 (b)) After minimization of the complementary
energy

Figure 5: Optimized structure from Example 3

Minimization of the complementary energy

Initial value : 0.85
Final value: 0.82
Calls of the objective function: 147
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Figure 6: Structure from Example 4

Iterations of the main algorithm: 10
Computation time (Intel Celeron 433): 20 min.
Final shape parameters: (2.281, 2.280, -0.585, -0.69315 (In 0.5)

We can see that the lower bound for the expansion has been attained, which suggests
that algorithm tended to make the void as small as possible to decrease the compliance of
the structure.

Minimization of [, 02, dQ

Initial value : 33.73

Final value: 32.53

Calls of the objective function: 154

Iterations of the main algorithm: 9

Computation time (Intel Celeron 433): 5h

Final shape parameters: (2.353, 2.326, -1.238, -0.69337 (In 0.5)

Example 4. A rectangular plate (Figure 6) with the triangular void is subjected to the
tension load. The aim is to change the location of this void to minimize stresses in the
plate. For that purpose minimization of the functiodgl= [, o3, d€ (thusp = 1.5) is
performed. Additionally, the size of the void cannot be decreased-(i-0).

Start: (0,0,0,0)

Initial value of J,: 43.75

Fianal value ofJ,: 40.95

Calls of the objective function : 1186

Iterations of the main algorithm 6

Final parameters: (-0.0011, -0.0087, -0.794, -0.01)

The stress distribution in the initial and optimized structure is presented at Figure 7(a)
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(a) before optimization (b) after optimizatior]fQ an dQ

e

Figure 7: Distribution of th equivalent stress (Example 4)

5.5 ldentification

For identification of shape and location of the voids we used the functional

1

J= / h(u,@)dl’ = = lu — @|? dTy (34)
r 2 To

expressing the distance between the measured displacement field on the external boundary

@ and the calculated one. The adjoint problem is loaded by the boundary traction

p*(x) = u(z) —a(x)

Example5. The structure from Example 2 is considered again (Figure 3).
The actual void parameters are (-1, 0.5, 2, -0.8). Identification was performed using
two initial configuration.

Start: (0,0,0,0)

Initial value of functional (34) : 5.72516

Final value : 4.511e-05

Calls of the objective function: 1186

Iterations of the main algorithm 127

Found location: (-1.11123, 0.37997, -1.22047,-0.79172)

For that initial guess obtained parameters constitute a local minimum of the objective
function.

Table 8:ldentification for starting point (0,0,0,0)

|| Iteration | parameter | value of J | calls of J ||
10 (-0.802, 0.375, -0.881, -0.848) 0.00082 94
20 (-1.139, 0.378, -0.859, -0.864) 0.00020 186
50 (-1.102, 0.388, -1.135, -0.808) 5.239e-05| 469
100 (-1.113, 0.380, -1.218, -0.792) 4.515e-05| 928
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Actual location:(-1, 0.5, 2, -0.8)

Found location:
(-1.11123, 0.37997, -1.22047, -0.79172)

ANNNNNNNNNNNNNNNNNN\N

Initial location: (2, -0.5, 2.5, 0.2)

Figure 8: Identification of void (Example 5)

For another starting point we obtain the global minimum:

Start: (2,-05,25,0.2)
Initial value of functional (34) : 7.02

Final value : 4511e-17
Calls of the objective function: 1902
Iterations of the main algorithm 202

Found location: (-1.0,05,2,-0.8)

Table 9:Identification for starting point (2, -0.5, 2.5, 0.2)

|| lteration | parameter | value ofJ | calls of J ||
10 (-1.021, 0.216, 2.888, -0.793) | 0.00138 103
20 (-1.178, 0.383, 2.493, -0.923) | 0.00048 199
50 (-1.033, 0.487, 2.143, -0.859) | 1.04e-05 | 483
100 (-1.0006, 0.5003, 2.003, -0.801)4.83e-09 | 946

Example6. A stress concentratorin the form of a triangular void in the structural element
(Figure 6) is being identified.

The actual configuration of the void is given by the vector (0.2, -1.5, 2, -0.6). Identi-
fication was performed starting from two initial points.

Start: (0! 0! 0! O)

Initial value of functional (34) : 0.0685

Final value : 1.655e-06

Calls of the objective function: 597

Iterations of the main algorithm 59

Found location: (-0.067,-2.117,-1.148, -0.605)
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> (-0.0670, -2.1173, -1.1476, -0.6045)

JAVAVAVYAVAVAVAVAVAVAY

Figure 9: Structural element: identification of triangular void

Table 10:Structural element: Identification for starting point (0,0,0,0)

| Iteration | parameter | value of J | calls of J ||
10 (0.017,-1.919, -1.155, -0.643) 0.00033 119
20 (-0.042, -2.006, -1.102, -0.591) 1.35e-05 | 221
50 (-0.065, -2.111, -1.143, -0.604) 1.70e-06 | 518

The found location is at a local minimum of the functiodal
For another starting point we attain the global minimum:

Start: (1.8,05,3,0)
Initial value : 0.04060742
Final value : 6.90973e-17
Calls of the objective function : 974

Iterations of the main algorithm: 95

Found location: (0.2,-1.5,2,-0.6)

Other attempts of identification were also performed for various starting points and
for different load conditions. Many of them ended in a local minimum of the functional.
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Table 11:Structural element: Identification for starting point (1.8, 0.5, 3, 0)

| lteration | parameter | value ofJ | callsofJ ||
10 (0.194, -0.315, 2.236, -0.345)| 0.00038 114
20 (0.123, -0.894, 2.233, -0.502) 0.00011 221
30 (0.192, -1.491, 2.018, -0.6003) 6.1e-7 329
50 (0.199, -1.496, 2.001, -0.5999) 1.70e-08 | 529

6 Conclusions

In the present work, a new method of shape sensitivity analysis for stress concentrators
based on BEM is presented. This method allows for avoiding numerical difficulties arising
from the presence of stress concentration in the vicinity of geometry singularities. In
many numerical tests this method proved to be able to give reliable results for many
types of functionals depending on mechanical quantities. These tests have shown that
the accuracy of computations is much higher for functionals of the form of the boundary
integral than the volume integral. For functionals expressed by the volume integral the
accuracy is considerably worse, and the time of calculation is much larger. This is caused
by the necessity of solving the complicated adjoint system and the fact, that calculation
of the volume integral is much more time—consuming than the boundary one. However,
theorems 1 and 2 allow to overcome these drawbacks for some types of functionals. It
has been also shown, that the presented method of sensitivity analysis can be successfully
applied in optimization and identification algorithms.
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