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Abstract 
The boundary and domain-type approximations are discussed in boundary integral 
equation formulations for solution of boundary value problems. A new approach is 
proposed with using a domain-type approximation of the primary field and collocation 
of boundary conditions at boundary nodes and local integral representation of the 
primary field at interior nodes. Two kinds of the domain-type approximation are 
utilized. The proposed method is illustrated on potential problems in two dimensions. 

 
1. Introduction 
 
     A huge amount of literature is devoted to numerical solutions of boundary value 
problems. The principal difference between the finite element method (FEM) and 
boundary integral equation method (BIEM) is in reduction of dimensionality [1, 2]. It 
means that the solution at an arbitrary point can be found, if we know relevant boundary 
densities without having known the solution at any other interior point in case of BIEM. 
Such a formulation is called also the pure boundary formulation. The main advantages 
of the BIEM approach result from the necessity to discretize only the boundary of the 
analyzed domain. On the other hand, the numerical integrations require an enhanced 
attention including the use of various regularization techniques [3, 4] owing to singular 
kernels originating from the fundamental solutions of governing differential operators.  
     It is well known that a pure boundary formulation is restricted to problems when the 
fundamental solution is available. A lot of criticism has been raised against the 
boundary element method (BEM) that it is not applicable to non-linear problems and/or 
problems governed by the differential equations with variable coefficients due to 
material non-homogeneities. Nevertheless, the BIE have been applied also to solution of 
such problems with using the fundamental solutions of simpler differential operators 
and treating the domain integrals by using the finite elements. Such an approach is 
called boundary-domain formulation in contrast to the pure boundary formulation. The 
simultaneous use of both the boundary elements and domain cells is not quite consistent 
from the point of view of approximation conception. 
     In the last decade an offence has been taken at the use of finite size elements (both 
the domain cells and boundary elements) with polynomial interpolations, because of the 
necessity of mesh generation. A lot of effort has been devoted to the development of 
various mesh-free approximations and implementations of both the integral equations 
and variational approaches employed in FEM formulations. It seems that the efficiency 

V. Sladek and J. Sladek / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 132-153 (2003)

132



of the use of the finite size elements or mesh-free approximations is dependent on the 
character of the boundary value problem, if re-meshing is required or not.  
     In this paper, we remember the standard BIEM with including the boundary-domain 
formulations in order to point out the difference between the boundary and domain 
approximation conceptions.  
     Further, we discuss the domain-type approximations and the use of physical 
principles in computation of nodal unknowns. We consider two kinds of domain-type 
approximations, such as standard finite elements and the moving-least-square 
approximation.  
     Simple numerical examples are considered for illustration of the proposed 
formulation.  
 
2. Standard Boundary Integral Equation Method 
 
      Standard BIEM is based on the use of the boundary integral equations and/or 
integral representations with the integrations on the global boundary of the analyzed 
domain. The global boundary integral equation is a constraint equation utilized as a 
relationship between relevant physically conjugated boundary densities which are 
approximated as independent quantities using boundary elements.  
 
2.1 Pure boundary formulation. Boundary element method 
 
     For illustration it is sufficient to consider a simple potential problem governed by the 
Laplace differential equation 

      2 ( ) 0u x∇ =   in   Ω                                                                                               (1) 

supplemented with the Dirichlet and Neumann boundary conditions given as, 
respectively, 

      ( ) ( ) if Du uη η η= ∈∂Ω  

      ( ) ( ) if N
u q
n
η η η∂

= ∈∂Ω
∂

                                                                            (2) 

where D N∂Ω = ∂Ω ∪∂Ω  is the complete boundary of the domain Ω .  

     The fundamental solution of the Laplace operator is defined as the solution of the 
Poisson equation in the infinite space with the point source generator, i.e. 

      2 ( ) ( )G x y x yδ∇ − = − −                                                                                     (3) 

where ( )rδ is the Dirac δ -function. It is well known that  
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in which or  is an arbitrary constant.  
     In view of eq. (1), we have the integral identity 

      2( ) ( ) ( ) 0G x y u x d x
Ω

− ∇ Ω =∫                                                                              (5) 

Making use of the Gauss divergence theorem repeatedly, one can derive the boundary 
integral representation of the potential field  

       
( )( ) ( ) ( ) ( ) ( ) ( )

( )
u G yy u y G y u d
n n

ηη η η η
η

∂Ω

 ∂ ∂ −
∆ = − − Γ ∂ ∂ 

∫                            (6) 

where 

          
1 ,

( )
0 , ( )

y
y

y
∈Ω

∆ =  ∉ Ω∪∂Ω
                                                                             (7) 

Owing to the strong singularity of gradients of the fundamental solution, the integral of 
the second term behind the integral sign in eq. (6) is not continuous across the boundary 
[5, 6]. Without going into details [4], we remember that the Cauchy principal value 
(CPV) concept can be avoided by using the integral identity 

          
( ) ( ) ( )

( )
G y d y

n
η η
η

∂Ω

∂ −
Γ = −∆

∂∫                                                                        (8) 

which is an equivalent of the rigid body motion idea employed in elasticity [7]. 
Assuming the boundary density of the potential to be Hölder continuous on the 
Ljapunov boundary curve (or surface), we can perform the limit y ζΩ ∋ → ∈∂Ω  in 
eq. (6) with substituted eq. (8) directly by putting y ζ= . Thus, we get the regularized 
boundary integral equation (BIE) with singular kernels 

    [ ] ( )( ) ( ) ( ) ( ) ( ) ( ) 0
( )

G uu u d G d
n n
η ζη ζ η η η ζ η
η

∂Ω ∂Ω

∂ − ∂
− Γ − − Γ =

∂ ∂∫ ∫                 (9) 

According to the integral representation (6), one can evaluate the solution of the 
boundary value problem at each point in Ω  without having known the solution at any 
other interior point. It is sufficient to know the distribution of both the boundary 
densities over the all boundary∂Ω . Thus, the formulation of the solution has a pure 
boundary character.  
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     Since the distributions of two relevant boundary densities involve information about 
variations of the potential field in two orthogonal directions, these boundary densities 
are mutually independent in mathematical language and/or canonically conjugated in 
physical language. It means that the variation of one of them over a certain segment of 
the boundary is not sufficient for getting the variation of the conjugated quantity by a 
mathematical manipulation without incorporating the physical coupling. Thus, on the 
Dirichlet part of the boundary, one can obtain the tangent derivatives of the potential 
along the boundary by differentiation, but the evaluation of the normal derivative 
requires knowledge of the potentials along the normal direction. Similar, by integrating 
the normal derivatives of the potential along a line orthogonal to the boundary, one 
cannot get the boundary value of the potential without having known the value of the 
potential at a point on this line. The boundary integral equation (9) is an integral 
equivalent of the governing equation (1). Thus, it represents the needed physical 
coupling or plays the role of a physical constraint that should be satisfied by the 
mathematically independent boundary densities. Having solved the BIE supplemented 
with the prescribed boundary conditions, one can get the distributions of u and 

/u n∂ ∂ along N∂Ω  and D∂Ω , respectively.  
     It is natural to discretize the boundary into finite size elements in numerical solution 
of the BIE, in order to model the geometry of the boundary and to approximate the 
boundary densities of relevant physical quantities. The formulation of the solution of 
boundary value problems by boundary integral equations and their numerical 
implementation by boundary elements are two corner stones leading to remarkable 
efficiency and accuracy of the boundary integral equation method [1] and/or boundary 
element method [2] when applied to problems where pure boundary formulation is 
available. 
 
2.2 Boundary-domain formulation 
 
One of the key points in the derivation of a pure boundary formulation is finding the 
fundamental solution. Note that the closed form fundamental solutions are available 
only for relatively simple differential operators with constant coefficients. Of course, for 
solution of non-linear problems, one cannot find a pure boundary formulation. 
Sometimes the fundamental solution of the governing differential operator is not 
employed because of its complexity. Replacing the adequate fundamental solution by a 
simpler one, we cannot get a pure boundary formulation too. Then, the domain integrals 
of the unknown field are involved in the formulation in addition to the boundary ones.       
     For illustration, let us consider a potential problem in media with material non-
homogeneity. The governing equation is given as 

   ( )( ) , ( ) , ( )i ik x u x f x=   in   Ω                                                                                 (10)     

According to one of the physical interpretations, ( )u x describes the stationary 
temperature field distribution with k and f being the heat conduction coefficient and 
body heat source density, respectively.  The subscripts following a comma denote the 
partial derivatives with respect to Cartesian coordinates.  
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     Assuming ( )k x to be a prescribed function of spatial coordinates, equation (10) can 
be rearranged as  

    2 , ( ) ( )( ) , ( )
( ) ( )
i

i
k x f xu x u x
k x k x

∇ + =                                                                            (11) 

For simplicity, let us consider the Dirichlet and Neumann boundary conditions given by 
eq. (2). Strictly speaking, the flux q is prescribed on N∂Ω . However, the normal 
derivative can be easily expressed by / /u n q k∂ ∂ = . 
     It should be stressed that the fundamental solution for the operator  

      2 , ( )
( )
i

i
k x
k x

 
∇ + ∂ 
 

 

is not available in closed form, in general. Nevertheless, one can formulate the solution 
of a boundary value problem using the integral equation approach.  
     Making use of the fundamental solution for the Laplace operator, we can recast the 
integral identity 

      2 ( )( ) ( ) ( ) ( ) , ( ) , ( ) ( )
( ) j j

G x yG x y u x d x f x k x u x d x
k x

Ω Ω

−  − ∇ Ω = − Ω ∫ ∫         (12) 

into the integral representation of the potential field 

    
( )( ) ( ) ( ) ( ) ( ) ( )

( )
u G yy u y G y u d
n n

ηη η η η
η

∂Ω

 ∂ ∂ −
∆ = − − Γ − ∂ ∂ 

∫  

                       
( ) ( ) , ( ) , ( ) ( )

( ) j j
G x y f x k x u x d x

k x
Ω

−  − − Ω ∫                                    (13) 

Owing to the domain integral of unknown potential gradients, the formulation has not 
any more the pure character. Thus, it is not sufficient to solve the system of the BIE for 
boundary unknowns, but one has to discretize also the interior of the domain in order to 
compute simultaneously the potential gradients. The integral representation of the 
potential gradients can be obtained directly by differentiating eq. (13) 

     ( ) , ( ) ( ) ( ) , ( ) ( ) , ( ) ( )i j ij i
uy u y u n G y G y d
n

η η η η η η
∂Ω

∂ ∆ = − − − Γ + ∂ ∫  

                           
, ( )

( ) , ( ) , ( ) ( )
( )

i
j j

G x y f x k x u x d x
k x

Ω

−  + − Ω ∫                             (14) 
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Besides this integral representation with hypersingular kernel, one can derive also the 
partially regularized integral representation with strongly singular kernels starting from 
the integral identity 

   2 , ( )
, ( ) ( ) ( ) ( ) , ( ) , ( ) ( )

( )
i

i j j
G x yG x y u x d x f x k x u x d x

k x
Ω Ω

−  − ∇ Ω = − Ω ∫ ∫       (15) 

Hence [4], 

   * ˆ( ) , ( ) D ( ) ( ) , ( ) ( )i kij k ij j
uy u y u G y d
n

ε η δ η η η
∂Ω

∂ ∆ = − − Γ + ∂ ∫  

                         
, ( )

( ) , ( ) , ( ) ( )
( )

i
j j

G x y f x k x u x d x
k x

Ω

−  + − Ω ∫                               (16) 

where 

      
3 3* , 2-d problems

, 3-d problems
k ij

kij
kij

δ ε
ε

ε

= 


 

and the differential operator D̂k is expressed in terms of the tangential derivatives as  

 D̂ ( ) ( ) ( )
( ) ( )k k k kl

l
Eρ η τ η η

τ η ρ η η
∂ ∂ ∂

= − =
∂ ∂ ∂

  ,    kl k l k lE ρ τ τ ρ= −   

with τ and ρ being the unit tangent vectors related to the outward normal vector n by 
= ×ρ n τ . In the case of two-dimensional problems 3k kρ δ= , hence, 3 3 0n τ= = and 
/ 0ρ∂ ∂ = , since all the quantities are independent on the third coordinate. 

     Recall that the tangent derivatives of the potential in eq. (16) do not give rise to new 
boundary unknowns, because they can be obtained from the approximation of the 
potential within a boundary element by direct differentiation with respect to intrinsic 
coordinates.  
     The regularized BIE resulting from eq. (13) is given by  

      [ ] ( )( ) ( ) ( ) ( ) ( ) ( )
( )

G uu u d G y d
n n
η ζη ζ η η η η
η

∂Ω ∂Ω

∂ − ∂
− Γ − − Γ +

∂ ∂∫ ∫  

        
, ( ) ( ), ( ) ( ) ( ) ( ) ( )
( ) ( )
j

j
k x f xu x G x d x G x d x
k x k x

ζ ζ
Ω Ω

+ − Ω = − Ω∫ ∫                       (17) 

Performing the discretization of the boundary into boundary elements and domain into 
cells, one can compute the unknown nodal values on the boundary and potential 
gradients at interior nodes by solving the system of the discretized BIE (17) and one of 
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the integral representations given by eqs. (14) and (16). It is not necessary to consider 
the integral representation of the potential gradients at boundary nodes, since they can 
be expressed in terms of the normal and tangential derivatives as 

 , ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i
u u uu n
n

ζ ζ ζ τ ζ ζ ρ ζ ζ
τ ρ

∂ ∂ ∂
= + +

∂ ∂ ∂
                                         (18) 

Thus, both the strongly- and hyper-singular integral representations are applicable 
without further regularization when collocating at interior nodes.  
      Similar boundary-domain formulation can be derived also for solution of the 
boundary value problems with non-linear constitutive law and/or for time-dependent 
problems with using static fundamental solutions in order to avoid the complexity of the 
time-dependent ones. Undoubtedly, the boundary domain formulation is much less 
effective than a pure boundary formulation because of the necessity to discretize also 
the interior of the domain. Nevertheless, it works reliably [8]. As compared with the 
FEM formulation, both the formulations require domain elements, but the mathematics 
is more complex in the boundary-domain formulation of the integral equation approach. 
The singular kernels in the integral equation approach lead to a localization yielding 
better conditioning of the discretized system of equations, while the polynomial trial 
functions in the FEM approach result in smoothing effects. Despite the boundary-
domain formulation is operating, one can point out certain discrepancy between two 
conceptions of the approximation of boundary densities in the BIE and the 
approximation of fields over domain-type elements. 
 
3. Domain-type approximations 
Contrary to boundary elements, the dimensionality of the problem is not reduced if 
approximations within domain elements are involved. It should be pointed out that 
approximating a field within a domain element, one can get complete gradients of that 
field by differentiating the approximation of the primary field. Thus, the conception of 
independent approximations of boundary densities employed in discretization of the 
BIE is not consistent with the conception of domain-type approximation of the same 
primary field as proposed in the boundary-domain formulation of the integral equation 
approach. 
     Let us consider a simple potential problem governed by the Laplace differential 
equation in a square L L×  with the boundary conditions shown in Fig.1.  

1

2

u=1

u=0

q=0q=0

1 2

34

Ω

       Fig. 1  Sketch of the b.v.p. 
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Obviously, the exact solution 2( ) /exu x x L= can be fitted by using a linear 
interpolation in the 2x -direction within the square element. Thus, using the bilinear 
quadrilateral Lagrange element 1S  with nodal points at corners of the square domain 
Ω ,  

    
1

4
1

1, 2
1

( ) ( ) ( )a a
S

a
u x u x N ξ ξ

=
= ∑ ,       

    1a
ix - Cartesian coordinates of the a-th nodal point on 1S , 

we obtain the exact solution by collocating only the Dirichlet boundary conditions, 
since the potential is prescribed at each node ( 1,2,3,4)ax a = .  
     The shape functions and their derivatives for the bilinear quadrilateral Lagrange 
element are given in Table 1.  

Table 1 

       1a =        2a =        3a =         4a =  

1 2( , )aN ξ ξ
 

1 2
1 (1 )(1 )
4

ξ ξ− −

 

1 2
1 (1 )(1 )
4

ξ ξ+ −

 

1 2
1 (1 )(1 )
4

ξ ξ+ +

 
1 2

1 (1 )(1 )
4

ξ ξ− +  

1 1 2, ( , )aN ξ ξ
 

    2
1 ( 1)
4
ξ −      2

1 (1 )
4

ξ−      2
1 (1 )
4

ξ+      2
1 (1 )
4

ξ− +  

2 1 2, ( , )aN ξ ξ
 

    1
1 ( 1)
4
ξ −     1

1 (1 )
4

ξ− +      1
1 (1 )
4

ξ+        1
1 (1 )
4

ξ−  

 
with [ 1,1]αξ ∈ − . Hence, the bilinear interpolation on 1SΩ = yields 

   
1

4
3 4 2 2

1, 2 1, 2 1, 2
1

1( ) ( ) ( ) ( )
2

a a
S

a

xu x u N N N
L

ξ
ξ ξ ξ ξ ξ ξ

=

+
= = + = =∑  

and    2i

i

u
x L

δ∂
=

∂
. 

Thus, the exact solution is reproduced. 
      Of course, in general, it is insufficient to assume a linear variation of the solution 

and the subdivision of the analyzed domain into more elements is required, 
1

m
e

e
S

=
Ω = ∪ . 

If we use four bilinear quadrilateral Lagrange elements as shown in Fig.2 for the same 
b.v.p., we may write six equations by collocating the Dirichlet boundary conditions at 
global nodes 1 2 5 7 8 9, , , , , andx x x x x x  as  
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4
1 1 1

1
( ) ( ) ( 1, 1) 0a a

a
u x u x N u

=
= − − = =∑ ,       

4
2 1 2

1
( ) ( ) (1, 1) 0a a

a
u x u x N u

=
= − = =∑  

4
5 2 5

1
( ) ( ) (1, 1) 0a a

a
u x u x N u

=
= − = =∑ ,        

4
7 3 7

1
( ) ( ) (1,1) 1a a

a
u x u x N u

=
= = =∑                                                    

4
8 3 8

1
( ) ( ) ( 1,1) 1a a

a
u x u x N u

=
= − = =∑  ,         

4
9 4 9

1
( ) ( ) ( 1,1) 1a a

a
u x u x N u

=
= − = =∑  

                                                                                                                                     (19) 
 

1

2

1 2

34

5

6

78
9

S1 S2

S3S4

    Fig. 2  Discretization into 4 Lagrange elements 
                                                                              ( )1 2 3 4S S S SΩ = ∪ ∪ ∪  

In order to collocate the Neumann boundary conditions, we need to express the 
potential gradients on domain elements in terms of the partial derivatives with respect to 
intrinsic coordinates. Assuming the isoparametric approximations, we have  

 1, 2
1

( ) ( ) ( )
e

n
ae a

S
a

u x u x N ξ ξ
=

= ∑                                                                        (20) 

     1, 2
1

( )
e

n
ae a

i iS
a

x x N ξ ξ
=

= ∑                                                                                  (21) 

Hence, 

 ( ) 1( ) ( ) ( )

e e e

j e
iji i j jS S S

h
x x

ξ
ξ ξ

−∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
i i i

                                                                 (22) 

where ( ) 1eh
−

is the inverse matrix to ..
eh  defined as 
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 1, 2 1, 2
1

( ) , ( )
n

e ae a
i i

a
h x Nα αξ ξ ξ ξ

=
= ∑                                                                         (23) 

Since 

 ( ) 1 3 3 1 2

3 1 1 2 2 1 2

( , )

( , ) ( , )

e
il jk kle
e eij mn m n

h
h

h h

ε ε ξ ξ

ε ξ ξ ξ ξ

−
=                                                                    (24) 

we may write  

 3 3 1 2
1 2

13 1 1 2 2 1 2

( , )( ) ( ) , ( , )
( , ) ( , )

e

e nil jk kl ae a
je e

ai mn m nS

hu x u x N
x h h

ε ε ξ ξ
ξ ξ

ε ξ ξ ξ ξ =

∂
=

∂
∑                            (25) 

It can be seen that on each element shown in Fig. 2, we have 

   1, 2( )
4

e
i i

Lhα αξ ξ δ=   ,                                                                                           (26) 

hence,  

   ( ) ( )1
1 1 2 2

4 4 4e
i j i j ik jk ijij

h
L L L
δ δ δ δ δ δ δ

−
= + = =                                                (27) 

 and  

     
4

1 2
1

( ) 4 ( ) , ( , )
e

ae a
i

ai S

u x u x N
x L

ξ ξ
=

∂
=

∂
∑                                                                  (28) 

Denoting by abΓ the side of an element between the global nodes ax and bx , we may 
write 

 ( )
56 56

4 2 6 32
1 2

11

14 ( ) , (1, )a a

a

u u u x N u u
n x L L

ξξ
=Γ Γ

+∂ ∂
= = = −

∂ ∂
∑  

  ( )
67 67

3 62

1

1u u u u
n x L

ξ

Γ Γ

−∂ ∂
= = −

∂ ∂
 

  ( )
94 94

4 32

1

1u u u u
n x L

ξ

Γ Γ

−∂ ∂
= − = −

∂ ∂
 ,    ( )

41 41

3 42

1

1u u u u
n x L

ξ

Γ Γ

+∂ ∂
= − = − −

∂ ∂
 

Bearing in mind the Neumann boundary conditions on 56 67 94, ,Γ Γ Γ  and 41Γ  we 
obtain two equations 

 6 3u u=   ,   4 3u u=                                                                                                  (29) 
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Thus, in this discretization, we get eight equations given by (19) and (29) when 
collocating the boundary conditions. Since the number of nodal unknowns is equal to 
nine, we need one more equation. The employed discretization and approximation is 
currently used in FEM formulation, where the complete system of algebraic equations 
for unknown potentials at nodal points is constructed as a weak formulation of the b.v.p. 
with using the approximation functions as the trial functions. Now, we propose to use 
the local integral equations (LIE) collocated at interior nodal points in order to complete 
the system of algebraic equations involving the collocation of the prescribed boundary 
conditions. 
 
3.1  Local integral equations and their implementation by using finite elements  
       (LIEFE) 

Let cS denote the union of all domain elements eS adjacent to the interior nodal point 
cx , i.e.,  

                  
1

c
e

mc
e

e
x S

S S
=
∈

= ∪    , with     
1

m
e

e
S

=
Ω = ∪                                                           (30) 

 
3.1.1 Potential problems governed by the Laplace differential equation (2-d) 

Selecting a subdomain c cSΩ ⊂ , we may write the local integral representation of the 

potential at cx in terms of the potential and its normal derivative on the boundary 
c∂Ω as 

  
( )( ) ( ) ( ) ( ) ( )

( )c

c
c cu G xu x G x u d

n n
ηη η η η
η

∂Ω

 ∂ ∂ −
= − − Γ 

∂ ∂  
∫                                  (31) 

Let us decompose cΩ and c∂Ω  as 

  
1

c
e

mc c
e

e
x S
=
∈

Ω = Ω∪   ,      
1

c
e

mc c
e

e
x S
=
∈

∂Ω = Γ∪                                                                        (32) 

with c c
e eSΩ =Ω ∩  and c c

e eSΓ = ∂Ω ∩  for { }; c
e e eS S x S∈ ∀ ∈ . 

     Assuming the finite element approximations and mapping c
eΓ  into c

eL  in the space 
of intrinsic coordinates, we obtain the discretized integral representation of the potential 
at cx in terms of the nodal values of the potential on cS as  
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 ( ) ( )
2

1

1 2
1 1

( ) ( ) ( ) ( , ) , ( )
Le

Le
c

e

sm n
c ae Le a Le Le Le c

i i
e a s

x S

u x u x n N G xη ξ ξ ξ η ξ
= =
∈

= − − +∑ ∑ ∫      

              ( ) ( )1
1 2 1 2( , ) , ( , ) ( ) ( )e Le Le a Le Le Le c e

jij
h N G x h s dsξ ξ ξ ξ η ξ

− + − 
                 (33) 

where we utilized a parametrization of the contour segments c
eL  in intrinsic space  

 { }2
1 2; ( ), [ , ]c Le Le Le Le Le

e k kL R s s s sξ ξ= ∀ ∈ = ∈ξ                                                   (34)  

Then, the Cartesian coordinates of c
e∈Γη   are defined uniquely by the transformation  

  ( )1 , 2
1

( ) ( ) ( )
n

Le ae a Le Le
k k

a
x N s sη ξ ξ

=
= ∑ξ                                                              (35) 

with the Jacobian of the transformation being given by 

 ( ) ( ) ( )e e e
k kh s h s h s=  ,   ( )1 , 2

1
( ) , ( ) ( )

Le Le n
e ae a Le Lek
k k

a

dh s x N s s
s ds

α
α

η ξ
ξ ξ

=

∂
= =

∂ ∑   (36)     

Since each discretized LIE brings coupling only among the nodes of the domain 
elements adjacent to the collocation point (interior node), the system matrix will not be 
fully populated like in FEM and contrary to standard BEM based on global BIE. 
Moreover, the LIE is nonsingular despite the singular kernels are employed.  
     Now, we can use the proposed LIEFE approach in solving the b.v.p. shown in Fig.2, 
where the bilinear quadrilateral Lagrange elements are employed. Since all the domain 
elements are adjacent to the interior node 3x , the discretized LIE involves all the nodal 

points independently of the choice of the subdomain cΩ . Thus, one can take cΩ =Ω , 
with c∂Ω being the global boundary ∂Ω . Nevertheless, this approach differs from the 

BEM by the approximation. Taking 3∂Ω = ∂Ω , one can perform all the integrations in 
the discretized LIE analytically with the results 

  ( ){
3

3
1 2 5 6 7 8 9 4( ) 1( ) ( ) ln 2

( ) 2
G xu d u u u u u u u u

n
ηη η
η π∂Ω

∂ −
Γ = − − + − + − + − +∫

∂
 

                                                         ( )2 6 8 4

2
u u u uπ + + + + 


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 ( )
3

3 1 2 5 6 7 8 9 41 1( ) ( ) ( )
2 2

u G x d u u u u u u u u
n
η η η

π∂Ω

∂ − Γ = − − − + − + − + − +∫ 
∂ 

 

                                                 ( )2 6 8 4 3 34 ln 2
2 2

u u u u u π  + + + + − − −   
         

Note that we have used or L= for the calibration of the fundamental solution given by 
eq. (4). Hence, and from (19) and (29), the LIE  

 
3

3
3 3 ( )( ) ( ) ( ) ( )

( )
u G xu G x u d
n n

ηη η η η
η

∂Ω

 ∂ ∂ −
= − − Γ 

∂ ∂  
∫  

becomes  

  [ ] 32 ln 2 1 (1 2 ) 0u+ − =                                                                                           (37) 

Thus, in view of (35) and (29), we have  

  3 4 6 1
2

u u u= = =                                                                                                     (38) 

The bilinear interpolations within four finite elements (Fig. 2) supplemented with the 
calculated values according to (19) and (38) result in the exact solution of the 
considered b.v.p. 
     Of course , any finer subdivision should reproduce the exact solution too. In order to 
demonstrate the sparsity of the system matrix, we have also applied the LIEFE to the 
same b.v.p. with using nine bilinear quadrilateral Lagrange elements with 16 nodal 
points as shown in Fig.3.  

1
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1 2

34

5

6
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8

9

S1 S2 S3
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1213
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11

14
16

S5S6
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   Fig. 3  Discretization into 9 Lagrange  
                                                                                       elements 

V. Sladek and J. Sladek / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 132-153 (2003)

144



Now, in view of eqs. (20)-(25), we have  

 1, 2( )
6

e
i i

Lhα αξ ξ δ=  ,  ( ) 1 6e
ijij

h
L
δ

−
=  ,  

4
1 2

1

( ) 6 ( ) , ( , )
e

ae a
i

ai S

u x u x N
x L

ξ ξ
=

∂
=

∂
∑      (39) 

The Dirichlet boundary conditions give directly the nodal values 

 1 2 5 7 11 12 13 150 , 1u u u u u u u u= = = = = = = =                                            (40) 

According to eq. (39), the Neumann boundary conditions yield 

 8 6u u=   ,           9 10u u= ,          16 14u u=  ,         4 3u u=                                     (41) 

To complete the system of algebraic equations for nodal potentials, we propose to 
collocate the LIE at the interior nodes  3 6 10, ,x x x  and 14x . If we select the four 

adjacent elements to an interior nodal point cx  as the subdomain cΩ  on which the LIE 

is considered, we can perform the adequate integrations over c∂Ω analytically. Then, 

taking eqs. (40) and (41) into account, we obtain the discretized LIE on 3 6 10, ,Ω Ω Ω  

and 14Ω , respectively, given as 

     3 6 10 14 0Au u Bu Cu+ − − =                                                                                (42) 

      3 6 10 14 0u Au Cu Bu+ − − =                                                                               (43)           

  3 6 10 14 2 1Bu Cu Au u B− − + + = −                                                                        (44) 

  3 6 10 14 2 1Cu Bu u Au B− − + + = −                                                                        (45)   

in which we have used the notations  

   4ln 3 5A = − −  ,   ln 3 1/ 2B = − −  ,   1C B= − . 

Thus, only four nodal values are coupled in the system of algebraic equations. Having 
solved the subsystem (42)-(45), we obtain 

     3 6 1/ 3u u= =   ,      10 14 2 / 3u u= =                                                                    (46) 

Hence, and from eq. (41), we receive 

      4 8 1/ 3u u= =   ,     9 16 2 / 3u u= =                                                                      (47) 

The numerical results for the nodal unknowns are identical with the exact values. Then, 
the bilinear interpolations within the employed finite elements follow the exact solution 
given by linear distribution of the potential in 2x -direction.  
     Of course, the use of finite elements with higher order interpolation polynomials 
should yield exact solution provided that the integrations are exact.  
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3.1.2  Potential problems in non-homogeneous media  
 
Let us consider the potential problem governed by eq. (10), which can be equivalently 
rewritten into the form given by eq. (11). The analyzed domain Ω is assumed to be 
subdivided into finite elements 1

m
ee S=Ω = ∪  with the polynomial interpolation of the 

variation of the potential, potential gradients and isoparametric approximation of the 
geometry as given by eqs. (20)-(25). 
     The system of algebraic equations for computation of nodal values of the potential is 
composed of two subsystems. One of these subsystems is created by collocating the 
prescribed boundary conditions at the nodal points bζ ∈∂Ω  as  

 ( ) , ifb b b
Du u ζ ζ= ∈∂Ω                                                                                    (48) 

 1 0 0 0 0
1 2 1 2

1 1

1 ( ) ( , ) ( ) , ( , ) ( )lim
b

Nbb
e

m ne e e ae a e e
ij j ib e a

S

h u x N n
m η ζ

ζ

ξ ξ ξ ξ η−

= = ∂Ω ∋ →
∈

=∑ ∑  

                               ( )1 ( ) , iflim
( ) b

Nb

b
N Db q

k η ζ
η ζ

ζ ∂Ω ∋ →
= ∈ ∂Ω − ∂Ω            (49) 

in which 0 0
1 2( , )e eξ ξ are the intrinsic coordinates of b

eSζ ∈ , bm  is the number of 

finite elements adjacent to bζ , and Nb N EbS∂Ω = ∂Ω ∩∂ , where EbS  is one of the 

finite elements adjacent to bζ , i.e., { }; b
Eb e eS S Sζ∈ ∀ ∈ . 

     The rest of the algebraic equations will be obtained by discretization of local integral 
representations of the potential field at interior nodes. According to eq. (13), we may 
write on cΩ  

     
( )( ) ( ) ( ) ( ) ( )

( )c

c
c cu G xu x G x u d

n n
ηη η η η
η

∂Ω

 ∂ ∂ −
= − − Γ + 

∂ ∂  
∫  

                                      
, ( )

, ( ) ( ) ( )
( )c

j c c
j

k x
u x G x x d x F

k x
Ω

+ − Ω +∫                           (50) 

where    

                 
( ) ( ) ( )
( )c

c cf xF G x x d x
k x

Ω

= − − Ω∫  

Now, in view of the finite element approximations (20)-(25), geometrical 
decompositions (32), and mapping c

eΓ  and c
eΩ  into c

eL  and c
eD , respectively, in the 

space of intrinsic coordinates 1 2( , )ξ ξ , we obtain the discretized LIE from (50) 
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 ( ) ( ) ( )1
1 2 1 2

1 1
( ) ( ) ( ) ( , ) , ( , ) ( )

c
ec

e

m n
c ae e a c

i jije a L
x S

u x u x n h N G xη ξ ξ ξ ξ η
−

= =
∈


= − − 


∑ ∑ ∫ ξ ξ                                        

                                                  ( )1 2( , ) , ( ) ( )a c
iN G x dLξ ξ η − − +


ξ ξ                     

 
( )
( ) ( ) ( )1

1 2 1 2 1 2 1 2
, ( )

( , ) , ( , ) ( ) ( , )
( )c

e

i e a c e c
jij

D

k x
h N G x x J d d F

k x
ξ ξ ξ ξ ξ ξ ξ ξ

− + − +


∫
ξ

ξ
ξ

   

                                                                                                                                       (51)  
where 

              1, 2
1

( )c
e

n
ae a

k kL
a

x Nη ξ ξ
=

= ∑    with   1 2( , ) c
eLξ ξ ∈  

              1, 2
1

( )c
e

n
ae a

k kD
a

x x N ξ ξ
=

= ∑    with   1 2( , ) c
eDξ ξ ∈  

and 1 2( , )eJ ξ ξ is the Jacobian of the transformation 1 2 1 2( , ) ( , )x x ξ ξ→ and it is given 
by  

            1 2 3 1 1 2 2 1 2( , ) ( , ) ( , )e e e
ij i jJ h hξ ξ ε ξ ξ ξ ξ=                                                       (52) 

Finally, making use of the parametrization (34), we may replace the contour integral in 
(51) by  

 ( ) ( )2

1

1 2 1 2( ) ( , ) ( ) ( ) ( ( ), ( )) ( )
Le

c Le
e

s
Le Le e

L s
dL s s h s dsη ξ ξ η ξ ξ=∫ ∫ξi i                                  (53) 

Example 
Let us consider the b.v.p. governed by the equation 

   2 , ( ) ( )( ) , ( )
( ) ( )
i

i
k x f xu x u x
k x k x

∇ + =    on a square L L×                                            (54) 

with the material non-homogeneity given as  

     2 /( ) x L
ok x k eδ=                                                                                                     (55) 

and the boundary conditions are shown in Fig. 1. 
     The exact solution is given by  

      
2 /1( )

1

x Leu x
e

δ

δ

−

−
−

=
−

                                                                                              (56) 

In order to get a faithful approximation of the potential interpolations, one should use 
several elements in 2x -direction due to the variation of the material parameters. Since 
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the boundary integrals in the LIE for the formulation of the solution of the b.v.p. in a 
non-homogeneous medium are the same as in the homogeneous one, we apply the 
discretization shown in Fig. 3. Then, the Dirichlet and Neumann boundary conditions 
result in eqs. (40) and (41), respectively.  
     In order to construct the LIE on the subdomain c cSΩ = , one has to perform the 

integrations over the finite elements adjacent to the interior node cx . In this case, all the 

integrals can be found in a closed form and the system of the LIE on 3 6 10, ,Ω Ω Ω , and 
14Ω  is given as  

     3 6 10 14( ) ( 1 ) 0Au u B D u B E u+ − + − − + =                                                     (57) 

      3 6 10 14( 1 ) ( ) 0u Au B E u B D u+ − − + − + =                                                    (58)           

  3 6 10 14( ) ( 1 ) 2 1B D u B E u Au u B D E− − − − − + + = − + +                               (59) 

  3 6 10 14( 1 ) ( ) 2 1B E u B D u u Au B D E− − − − − + + = − + +                               (60) 

in which  

   
7(2ln 2 3ln 3 )

18 2 2
D δ π
= − − +   ,       

29 5(4ln 2 9ln3 )
18 2 2

E δ π= − − +          (61) 

and the constants ,A B  have been defined above.  
      Having solved the system of equations (57)-(60) for nodal unknowns, we receive  

  14 10u u=  ,    6 3u u=  ,    
2

3
2 2

( )
3

u α β
α β
+

=
+

  ,     10
2 2

2 ( )
3

u α α β
α β

+
=

+
                    (62) 

where 

   1 2 2(1 ln3)Bα = − = + ,         ( ) 3 2ln 3 ln 2
3 2

D E δ πβ  = − + = + − − 
 

  

The increase of the material parameter k at 2x L= and the accuracy of the numerically 
computed potential at interior nodes are shown in Table 2.  
 
Table 2  Numerical results in non-homogeneous medium 

δ  
2( ) ok x L k eδ= =  2% err ( / 3)u x L=  2% err ( 2 / 3)u x L=  

0.1     1.105170918           1.2996             0.6432 
0.01     1.010050167           0.1323             0.0661 

 
Since all the integrations have been carried out analytically, the errors are given by the 
discretization and polynomial interpolation of the potential field in the numerical 
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computation.  Of course, three elements in 2x -direction would not be enough for higher 
values of the parameter δ .   
 
3.2  MLS-approximation in combination with Local Integral Equations 
 
Another of the domain-type approximations is the Moving Least Square (MLS)-
approximation, in which no elements are created. The nodal points are scattered freely 
throughout the analyzed domain and the contribution of particular nodes into the final 
approximation is controlled by certain weight functions employed in the determination 
of the coefficients in polynomial expansions by using weighted least-square-method. 
The approximant ( )hu x of the potential field is defined by  

         ( ) ( ) ( )hu x p x c xα α=         at  xx∈Ω                                                              (63) 

where { } 1( )p x µ
α α=  is a complete monomial basis of order µ , and ( )c xα  are the 

expansion coefficients defined at each point x  and determined by minimizing the 
weighted least-square functional  

 ( ) 2

1
ˆ( ) ( ) ( ) ( ) ( )

N a a a a

a
J x H w x w x p x c x uα α

=
 = −∑                                                 (64) 

where N is the total number of nodal points ( 1,2,..., )ax a N= , ( )H z is the 
Heaviside unite step function 

 
0 , 0

( )
1 , 0

z
H z

z
≤

=  >
 

and ˆau are up to now unspecified coefficients, which will be determined by the physics 
of the problem. Recall that summation with respect to the repeated Greek subscripts is 
assumed in the range from 1 to µ .  
     Since ( )c xα  should minimize the functional ( )J x , we may write 

 ( )
1

( ) ˆ0 2 ( ) ( ) ( ) ( ) ( )
( )

N a a a a a

a

J x H w x w x p x p x c x u
c x α β β
α =

∂  = = −∑  ∂
                     (65) 

hence, we obtain the system of equations  

  
1

ˆ( ) ( ) ( )
N a

a
a

A x c x B x uαβ β α
=

= ∑                                                                                 (66)  

in which  

  ( )
1

( ) ( ) ( ) ( ) ( )
N a a a a

a
A x H w x w x p x p xαβ α β

=
= ∑  

   ( )( ) ( ) ( ) ( )a a a
aB x H w x w x p xα α=                                                                     (67) 
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Having solved the system of equations (66) for ( )c xα , we obtain 

 1

1
ˆ( ) ( ) ( )

N a
a

a
c x A x B x uα αγ γ

−

=
= ∑                                                                                   (68) 

and finally, from (63), we have 

 ( )
1

ˆ( ) ( ) ( )
Nh a a a

a
u x H w x x uφ

=
= ∑                                                                                (69) 

where ( )a xφ are certain shape functions and ˆau nodal values (or expansion 
coefficients) with  

 1( ) ( ) ( ) ( )a
ax p x A x B xα αγ γφ −=                                                                                  (70) 

Recall that ˆau are fictitious nodal values, since ˆ ( )a au u x≠ and ˆ ( )a h au u x≠ , because     

  ( )a b
abxφ δ≠ . 

Since the derived approximation is a domain-type approximation, we can get the 
approximation of the potential gradients by differentiating the approximation of the 
potential. Thus, 

   ( )
1

ˆ, ( ) ( ) , ( )
Nh a a a

k k
a

u x H w x x uφ
=

= ∑                                                                           (71) 

where the gradients of the shape functions are given as 

 1 1 1
, , ,, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a

k k a k a a kx p x A x B x p x A x B x A x B xα αγ γ α αγ γ αγ γφ − − − = + +    (72) 

with  

 1 1 1
, ,( ) ( ) ( ) ( )k kA x A x A x A xαγ αβ βλ λγ

− − −= −                                                                       (73) 

In a similar way, one could get also approximations of higher order derivatives of the 
primary field.  
     It is well known that the physics of any b.v.p. is determined by the boundary 
conditions and governing equations. That is why it is important to put the nodal points 
on the boundary of the analyzed domain as well as in its interior, when a domain-type 
approximation is utilized. Then, the system of algebraic equations for computation of 
the fictitious nodal values ˆau  can be constructed by  

(i)  collocation of  the prescribed boundary conditions 

       ( )
1

ˆ( ) ( ) ( ) ( )
Nh b a b a b a b

a
u H w u uζ ζ φ ζ ζ

=
= =∑  , if    b

Dζ ∈∂Ω                       (74) 
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       ( )
1

( )ˆ( ) , ( ) ( ) ( ) , ( )
( )

bNb h b b a b a b a
i i i i ba

qn u n H w u
k
ζζ ζ ζ ζ φ ζ
ζ=

= =∑  ,   

                                                                           if  ( )b
N Dζ ∈ ∂Ω − ∂Ω                   (75) 

 
(ii) consideration of the local integral representations of  the potential field at the   

interior nodal points cx  
  

( ) ( )
1

, ( )
ˆ ( ) ( ) ( ) , ( ) ( ) ( )

( )c

N ja a c a c a a c
j

a

k x
u H w x x H w x x G x x d x

k x
φ φ

= Ω

 − − Ω +∑ ∫


 

  ( )( ) ( ) , ( ) , ( ) ( ) ( ) ( )
c

a a c a c c
i i iH w G x G x n d Fη φ η η φ η η η η

∂Ω

 + − − − Γ =∫   
  (76) 

where cF is defined after eq. (50). Basically, there is no restriction to the selection of 
the subdomain c cxΩ ∋ . Nevertheless, it is appropriate to consider sufficiently small 
subdomains, in order to receive sparse system matrix. Moreover, an appropriate 
arrangement of the shape of cΩ can simplify the LIE. If cΩ is a circle (or ball) with the 
radius or  and centered at cx , then the fundamental solution 

 *

1 ln , 2
2

( )
1 1 1 , 3

4

o

o

r for d problems
r

G r
for d problems

r r

π

π

  
− −  
  = 

  − − 
 

                                               (77) 

vanishes on the boundary c∂Ω . Then, the LIE (76) becomes 

 ( ) ( )
1

, ( )
ˆ ( ) ( ) ( ) , ( ) ( ) ( )

( )c

N ja a c a c a a c
j

a

k x
u H w x x H w x x G x x d x

k x
φ φ

= Ω

 − − Ω +∑ ∫


 

               ( )( ) ( ) , ( ) ( ) ( )
c

a a c c
i iH w G x n d Fη φ η η η η

∂Ω

+ − Γ =∫ 


                           (78) 

Recall that the nodal values ˆau have not a physical meaning. Having solved the system 
of algebraic equations for the fictitious nodal unknowns, one can reconstruct the 
physical solution by using eq. (69). 
      The integrations are performed in the global Cartesian coordinate system and the 
shape functions as well as their gradients are generated directly at the integration points 
numerically.  For more details of the construction of the shape functions we refer the 
reader to [9, 10].  
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     In contrast to the previous formulations based on the LBIE and MLS-approximation 
[10, 15], we propose to collocate directly the approximations for physical boundary 
quantities at nodal points on the boundary with taking into account the prescribed 
boundary conditions. Consequently, the formulation is really mesh-free because no 
integral equations are considered around the boundary nodal points and hence, it is 
unnecessary to model the boundary geometry for the integration over boundary 
segments. Moreover, the problem of singular boundary integrals is avoided, since the 
collocation point cx is an interior point of the subdomain ( )c c cxΩ ∉∂Ω . 
 
4. Conclusions  
 
The paper presents a new formulation for solution of boundary value problems in the 
potential theory. This formulation consists in: 

(i)  the domain-type approximation of the potential field 
(ii) satisfaction of the prescribed boundary conditions at boundary nodes by collocating 

the approximations of the relevant quantities (derived from the approximation of 
the primary field – potential) at the boundary nodes 

(iii) collocation of the local integral representations of the potential field at interior 
nodes.  

Two kinds of the domain-type approximations are discussed with using either the 
discretization of the analyzed domain into standard finite elements or the MLS-
approximation when a mesh-free scattering of nodal points is sufficient. In the first 
approach, certain grouping of nodal points into elements is required and the shape 
functions are known a priori in a closed form, while in the second approach no elements 
are required but the shape functions are more complex and evaluated only numerically 
at each integration point. Thus, the use of standard finite elements seems to be more 
effective in problems when re-meshing is not needed contrary to the mesh-free 
approach.  
     The proposed formulation possess certain advantages as compared with the standard 
boundary integral equations (considered on the global boundary of the analyzed 
domain) when the pure boundary formulation is not available. Such a case occurs if 
either the fundamental solution of the governing equation is not available or we do not 
use the original fundamental solution because of the enormous complexity of further 
calculations. In the proposed approach, the only unknowns are the nodal values of the 
primary field in contrast to the boundary-domain formulation, where the unknowns of 
the independent boundary densities are to be computed by solving the singular global 
BIE together with computation of unknowns at interior nodes. The LIE are non-singular 
and no BIE are considered at boundary nodes in this new approach. 
      Bearing in mind the necessity of regularization of standard BEM formulations, one 
can find sometime the proposed formulation more convenient even in case of problems 
when the pure boundary formulation is available, especially if we need to know the 
solution throughout the analyzed domain.  
      For simplicity, we explained the new formulation on potential problems with 
dealing some details only in two dimensions. Of course, the extension to solution of 
boundary value problems for arbitrary partial differential equations is possible.  
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