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Abstract

A boundary element method (BEM) for bimaterial domains consisting of two
isotropic solids bonded perfectly along the straight interface will be developed. We
follow the physical interpretation of Somigliana’s identity to represent the displace-
ment in the bimaterial domain by the continuous distributions of the line forces
and dislocation dipoles over its boundary. The fundamental solutions used are
the Green’s functions for the line force and the dislocation dipole that satisfy the
traction and displacement continuity across the interface of two domains. There
is no need to model the interface because the required continuity conditions there
are automatically satisfied by the Green’s functions.

The BEM will be applied to study the edge stress concentration of the bima-
terial solids. We calculate the singular stress distribution at the free edge of the
interface for various bimaterial configurations and loadings, in particular, for the
domain consisting of thin coating over the substratum. Since the Green’s function
BEM does not require the boundary elements on the interface, it can handle the
edge singularity on the interface accurately even for extremely thin coatings. The
BEM developed here is not limited to the edge stress concentration problems and
can be applied to a broad range of the bimaterial domain problems effectively.

1 Introduction

We explore the use of the special fundamental solutions, in the boundary element
method (BEM), that satisfy the continuity of the displacement and traction along
the straight interface of perfectly bonded two dissimilar isotropic half-planes in
two-dimensions. Such fundamental solutions are called the Green’s functions and
the boundary element method using the Green’s functions as the Green’s function
BEM. For the half-plane problems in two-dimensions the Green’s functions that
satisfy the traction-free boundary condition on the surface of the half-plane have
been used by Telles and Brebbia [1] and Meek and Dai [2] for isotropic solids, Du-
mir and Mehta [3] for orthotropic solids, and Pan et al. [4] for general anisotropic
solids to formulate the Greens function BEMs. The Greens functions that satisfy
the crack surface traction-free boundary condition for a single crack have been used
by Snyder and Cruse [5], Clements and Haselgrove [6], and Ang [7] for anisotropic
solids. The Greens function BEMs for the domain containing an elliptical hole
have been proposed by Morjaria and Mukherjee [8] and Denda and Kosaka [9] for
the isotropic solids, Kamel and Liaw [10] and Hwu and Yen [11] for the anisotropic
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solids in plane strain/stress and generalized plane strain, respectively. For the bi-
material domain problems Berger [12] has obtained the Green’s functions for the
general anisotropic solids and formulated the bimaterial domain Green’s function
BEM. For interface crack problems, Yuuki abd Cho [13] and Berger and Tewary
[14] have proposed the Green’s function BEMs for the bimaterial isotropic solids
and general anisotropic solids, respectively. In General the number of the Green’s
function BEMs for the elasticity problems is limited to problems with simple ge-
ometry due to the lack of the Green’s functions for more complex problems as
opposed to those in the potential type problems (Melnikov [15]).

The majority of the Green’s functions available are two-dimensional and have
been obtained by the complex variable methods in elasticity (Muskhelishvili [16],
England [17]) where the complex displacement u1 + iu2 is used in place of the
real components u1 and u2, where i =

√
−1. These Green’s functions, originally

obtained in the complex variable form, are converted to the real variable form to
be used for the standard BEMs. For two-dimensional problems we demonstrate
that this conversion is unnecessary and present the Somigliana’s identity in the
complex variable form. This complex variable Somigliana’s identity consists of
complex valued boundary integrals that represent the continuous distributions of
the complex valued line forces and line dislocation dipoles. We adopt the straight
boundary element and perform these integrals analytically. It is after the analytical
evaluation of these integrals that the complex form is converted to the real form
to construct the standard system of boundary equations. The proposed BEM is
equivalent to the standard direct formulation of the BEM.

Many composite materials consists of layers of bonded dissimilar materials.
The debonding of these layers along the interface is most likely to occur at its
free edge where the stress become concentrated. We apply the Green’s function
BEM to analyze the edge stress concentration of the bimaterial solids which was
studied analytically by Bogy [18]. No previous BEM or the Green’s function BEM
has treated this problem. We calculate the singular stress distribution at the
free edge of the interface for various bimaterial configurations and loadings, in
particular, for the domain consisting of thin coating over the substratum. Since
the Green’s function BEM does not require the boundary elements on the interface,
it can handle the edge singularity on the interface accurately even for extremely
thin coatings. The BEM developed, not limited to the edge stress concentration
problems, can be applied to a broad range of the bimaterial domain problems
effectively.

2 Somigliana’s identity for the Green’s function
BEM

Consider the line force applied at x in an infinite bimaterial plane B∞ with the
straight interface. The resulting displacement and traction solutions at y that
satisfy the continuity of the displacement and traction on the interface are called
the Green’s functions. For an arbitrary shaped finite bimaterial domain B, with
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the straight interface, subject to the traction Tα and displacement Uα on the
boundary ∂B, the displacement is given by Somigliana’s identity

uγ(x) =
∫

∂B

Tα(y)Gαγ(y,x)ds(y)−
∫

∂B

Uα(y)G∗αγ(y,x)ds(y) (x ∈ B), (1)

where Gαγ(y,x) and Gαγ
∗(y,x) are the displacement and traction Green’s func-

tions, respectively. Notice that the integration is performed only over the boundary
of the bimaterial domain and does not include the interface.

The line dislocation dipole is an infinitesimal segment ds that undergoes a
displacement jump. Let Gαγ(y,x)∗ds be the αth displacement component at y
when the unit γth component of the displacement jump is specified at x over ds
in B∞. Using the reciprocity relation

Gαγ(y,x) = Gγα(x,y), (2)

for the displacement Green’s function, we can show the relation,

−G∗αγ(y,x) = Gγα(x,y)∗, (3)

between the the traction Green’s function of the line force and the displacement
Green’s function of the line dislocation dipole as shown by Denda and Kosaka [9].
By substituting the relations (2) and (3) into (1) we get an alternative form of
Somigliana’s identity

uγ(x) =
∫

∂B

Gγα(x,y)Tα(y)ds(y) +
∫

∂B

Gγα(x,y)∗ Uα(y)ds(y), (4)

for x ∈ B and zero displacement outside B. According to the identity (4), the
displacement field in the bimaterial body B subject to the traction Tα and the
displacement Uα on the boundary is given by the distributions of the line forces
and dislocation dipoles, with the densities Tα and Uα, respectively, over a contour
∂B, which now is simply a line marked out in the infinite bimaterial medium
B∞. The two forms of Somigliana’s identity, representing its mathematical (1)
and physical (4) interpretations, are equivalent and either can be used for the
direct formulation of the BEM. We adopt the latter form since it is amenable to
the complex variable representation.

3 Green’s Functions

3.1 Line Force and Dislocation

In Muskhelishvili’s complex variable formalism ([16] and [17]) for isotropic elastic-
ity we seek for the complex displacement u = ux + iuy at point z = x+ iy resulting
from the complex line force f = fx + ify or the line dislocation b = bx + iby at
ζ = ξ + iη. The components (ux, uy), (fx, fy), and (bx, by) represent the dis-
placement, line force and line dislocation (or Burgers) vectors, respectively. The
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displacement Green’s functions for the line force and the dislocation solutions are
closely related due to their duality relations (Ni and Nemat-Nasser [19]). A dis-
location dipole consists of a pair of ± dislocations separated by an infinitesimal
distance. It represents a displacement jump along the infinitesimal line segment
connecting the two dislocations and its solution is obtained from the dislocation
solution by applying the total derivative operator. The Green’s functions used as
the kernel functions of the BEM are those for the line force and the dislocation
dipole.

We consider an infinite bimaterial domain consisting of the upper and the
lower halves, R1 and R2, bonded perfectly together along the straight interface.
For the line force f and line dislocation b at ζ in R1, we derive the displacement
Green’s functions by enforcing the continuity of the displacement and the traction
along the interface. The standard framework of the complex variable methods
in elasticity that uses a set of analytic functions, as summarized in Appendix A,
yields the displacement Green’s function solutions given by

2µ1{(ux + iuy)1 − (ux + iuy)rb} (5)

= −
{
κ1 log(z − ζ)− k1log(z − ζ)

+κ1k1δ1 log(z − ζ̄)− λ1log(z − ζ̄) + δ1
(z − z̄)(ζ − ζ̄)

(z − ζ̄)
2

}
γ1

+

{
(z − z̄)− (ζ − ζ̄)

z − ζ
+ δ1

(
κ1
ζ − ζ̄

z − ζ̄
+ k1

z − z̄

z − ζ̄

)}
γ̄1 (z ∈ R1),

2µ2{(ux + iuy)2 − (ux + iuy)rb} (6)

= −
{
κ2(1 + λ1) log(z − ζ)− (1 + δ1)k1log(z − ζ)

}
γ1

+
(1 + λ1)(z − z̄)− (1 + δ1)(ζ − ζ̄)

z − ζ
γ̄1 (z ∈ R2),

where {
k1 = −κ1, γ1 = f

2π(κ1+1) (line force)
k1 = 1, γ1 = iµ1b

π(κ1+1) (line dislocation)
, (7)

and

κ1 = 3− 4ν1 (plane strain), (3− ν1)/(1 + ν1) (plane stress), (8)

in terms of Poisson’s ratio ν1. Further the coefficients δ1 and λ1 are given by

δ1 =
α1 − β1

1 + β1
, λ1 =

α1 + β1

1− β1
, (9)

in terms of Dundurs’ parameters [20]

α1 =
µ2(κ1 + 1)− µ1(κ2 + 1)
µ2(κ1 + 1) + µ1(κ2 + 1)

, β1 =
µ2(κ1 − 1)− µ1(κ2 − 1)
µ2(κ1 + 1) + µ1(κ2 + 1)

, (10)
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where κ2 is defined by Poisson’s ratio ν2 of material 2 by the relations similar to
(8). Note that the subscripts 1 and 2 refer quantities associated with the regions
R1 and R2, respectively. We use the principal branch for the logarithmic functions
so that their arguments range from −π (exclusive) to +π (inclusive). The term
(ux + iuy)rb is the rigid body displacement to be determined next.

If we apply a line force component fy at P (ζ = ξ + iη) in R1 (upper half), we
expect the displacement component ux to vanish at the point Q(z0 = ξ) on the
interface directly below the source P to satisfy the symmetry condition. Further, if
we apply a force component fx at Q we expect the displacement uy at P to vanish
to satisfy the reciprocity condition. However, the line force Green’s function (5)
does not satisfy these conditions until we add the complex rigid body displacement

(ux + iuy)rb = i
λ1 − κ2

1δ1
8µ1(κ1 + 1)π2

(fx + ify) (11)

in both R1 and R2. Notice that if we replace log(z−ξ̄) in (5) with log(z−ξ̄)−log(i),
then the additional term − log(i) will produce the rigid body displacement (11).
The rigid body displacement for the line dislocation is set to zero. For the line
force f and line dislocation b at ζ in R2 (lower half-plane), the Green’s function
solution is obtained if we swap indices 1 and 2 in equations (5)-(11) and replace i
by −i in (11).

3.2 Dislocation Dipole

Consider a pair of line dislocations with the Burgers vectors −b and b located at ζ
and ζ+dζ, respectively. This pair produces a displacement jump over the infinites-
imal line segment dζ connecting the two dislocation sites and called a dislocation
dipole. Its Green’s function is obtained by applying the total differential operator,

d =
∂

∂ζ
dζ +

∂

∂ζ̄
dζ̄ , (12)

to the Green’s function (5) and (6) of the dislocation.

4 Boundary Equations

4.1 Constant Interpolation

We approximate the boundary by a set of straight lines Lj (j = 1, 2, ...,m)
with the slope φj and use the constant interpolation for the boundary traction
Tj = Tjx + iTjy and displacement Uj = Ujx + iUjy for each element Lj . There
is no need to introduce boundary elements along the interface since the interface is
built in the Green’s functions. We evaluate the displacements at the middle points
zk (k = 1, 2, ...,m) of the boundary elements to set up the system of boundary
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equations,

2Uk =
m∑

j=1

[
MkjTj + N̄kj T̄j

]
−

m∑
j=1

[
KkjUj + L̄kjŪj

]
(k = 1, 2, ...,m) ,

(13)
where the complex valued coefficients Mkj , Nkj , Kkj , and Lkj are given in Ap-
pendix B. The actual system we solve is the real variable form of (13) given by

2
{
Ukx

Uky

}
=

m∑
j=1

[
<(Mkj +Nkj), −=(Mkj +Nkj)
=(Mkj −Nkj), <(Mkj −Nkj)

]{
Tjx

Tjy

}

−
m∑

j=1

[
<(Kkj + Lkj), −=(Kkj + Lkj)
=(Kkj − Lkj), <(Kkj − Lkj)

]{
Ujx

Ujy

}
(k = 1, 2, ...,m), (14)

where < and = indicate the real and the imaginary parts. This system (14) of
the boundary algebraic equations is equivalent to the traditional system of the
boundary integral equations in the direct formulation except that the coefficients
of the former are evaluated analytically and no integrals are involved.

4.2 Higher order interpolation

The use of higher order interpolation functions is essential in the analyses of bima-
terial plates where stress concentration is expected near the edges of the interface
as indicated by Bogy [18]. We discretize the boundary by straight elements and
approximate the boundary displacement and traction by the quadratic functions.
The boundary integrals are evaluated analytically. The essence of the BE im-
plementation remains the same as the case of the constant interpolation and the
details are omitted.

5 Edge Stress Concentration Analysis

Note that all the numerical results in this section have been obtained using the
quadratic interpolation functions. First we have analyzed a square plate in uniaxial
tension (σ0 in x2 direction) using one of the material combinations chosen by Bogy
[18]: ν1 (material 1) = ν2 (material 2) = 0.5 with the ratio of shear modulus
µ2/µ1 = 0.111 or α1 = − 0.8 and β1 = 0 in terms of Dundurs’ parameters
defined by (10). Thickness of the two material layers are equal and plane strain
is assumed. Number of elements introduced along the plate boundary, which are
progressively refined as the interface is approached, is 32 when the entire plate is
analyzed. The size of the smallest boundary element, which appear adjacent to
the interface, is 1/100000 th of the half plate width w. Since stress component σ11

is expected to be discontinuous across the interface the stress calculation cannot
be performed exactly on the interface; rather it is performed along two horizontal
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Figure 1: Bimaterial square plate (µ2 / µ1 = 0.111, ν1 = ν2 = 0.5) in tension.
Variation of the stress along horizontal lines y/w = ±1.0×10−4 in the immediate
neighborhood of the interface edge. (a) σ±22, (b) σ±12, and (c) σ±11. Superscripts ±
indicate evaluation at ±1.0× 10−4. Thickness of the two layers are the same.

lines y/w = ± ε just above and below the interface. For calculations of the
interface stress, the offset distance ε should be small enough so that the values
of the stress components σ22 and σ12 evaluated at two adjacent points across the
interface are almost identical, which becomes increasingly difficult as we approach
the extreme vicinity of the interface edge; the chosen values of ε for the interface
stress calculation is ε = ± 1.0 x 10−4 and ±1.0 x 10−5. The results are shown
in Fig. 1 (for ε = ± 1.0 x 10−4) and 2 (for ±1.0 x 10−5). The calculated values
of the interface stress agree very well with those obtained by Bogy [18] near the
interface in the range 0.5 < r/w < 1/1000, where r is the distance from the
interface edge; note that Bogy has analyzed the infinite strip with finite width and
that he has stopped the calculation at about r/w = 1/1000. What is alarming is
that as we calculate the interface stress nearer the edge than Bogy did (i.e., up to
1/100000 of the plate width) the value of shear stress σ12 (not the normal stress
σ22 which is known to be infinite) can be several times higher than Bogy predicted.
Note that this shear stress drops suddenly to zero at the edge where the traction
free boundary condition has to be satisfied. Further the value of normal stress
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Figure 2: Bimaterial square plate (µ2 / µ1 = 0.111, ν1 = ν2 = 0.5) in tension.
Variation of the stress along horizontal lines y/w = ±1.0×10−5 in the immediate
neighborhood of the interface edge. (a) σ±22, (b) σ±12, and (c) σ±11. Superscripts ±
indicate evaluation at ±1.0× 10−4. Thickness of the two layers are the same.

σ11 can be as high as σ11 = −10σ0 (compression) for material 1 and σ11 = +6σ0

(tension) for material 2 at the interface. (Note that Bogy did not calculate σ11.)
The component σ11 is discontinuous across the interface and drops suddenly to
zero at the edge.

The issue of artificially high value of stress as boundary element nodes are
approached has to be carefully taken care especially when we evaluate the interface
stress. When constant interpolation functions are used the value of the stress, as
a rule of thumb, is affected by the individual boundary element singularity within
the disc (centered at an element end point) whose radius is approximately equal
to the size of the element. Although this radius of influence due to the boundary
element singularity is drastically reduced when quadratic interpolation functions
are used, we have avoided evaluating the interfacial stress within the distance
equal to the smallest size of the element which is located adjacent to the interface
edge. Thus we are confident that the calculated value of the interface stress is
not affected by the artificial singularity. Similar precautions should be applied for
stress calculations at any points in the vicinity of the interface edge.
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Figure 3: An Al2O3 / Nb plate with thin Al2O3 layer.

Next we consider Al2O3 (ceramic) / Nb (metal) bonded square plate in ten-
sion, as shown in Fig. 3 (h1 = h2 = w), which represents more realistic material
combination than selected by Bogy. Fig. 4 shows the interface stress distribution.
This material combination characterized by Dundurs’ parameters α1 = −0.52 and
β1 = −0.57 has been taken from Evans et al (1986). The mesh used is the same as
the first example above and plane strain is assumed. Again the high stress concen-
tration for the component σ12 and, especially, σ11 is observed as well as singular
behavior for σ22 at the edge. Although the finite element calculations by Evans et
al [21] are qualitatively correct their values of interface stress are much lower than
predicted in Fig. 4. The variation of the individual stress component in the entire
plate is shown in Figs. 5, 7 and 9 in contour plots and 6, 8 and 10 in 3D plots. To
see effects of the thickness h of the Al2O3 layer we have analyzed the bimaterial
plate with variable Al2O3 layer thickness (h/w = 1.0, 0.1, and 0.01) while fixing
the thickness of the Nb layer as shown in Fig. 3. The interface stress components
for various thickness are shown in Figs. 11 and 12. Note that for very thin layer
of Al2O3 the distance between the interface, where the stress is evaluated, and
the top edge of the plate, where boundary elements are located, becomes very
small. In order that the calculated stress is not influenced by artificial boundary
element singularities we have refined the boundary element mesh progressively as
the thickness of the layer has been reduced: 32, 54, and 66 elements for h/w = 1.0,
0.1, and 0.01, respectively. In particular in producing the solution curves for the
layer thickness h/w = 0.01, which are accompanied by extremely sharp spikes near
the edge, we have used several different boundary element meshes to make sure
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Figure 4: Interface stress for an Al2O3 / Nb square plate in tension. Variation of
the stress along horizontal lines y/w = ± 1.0× 10−3 in the immediate neighbor-
hood of the interface edge. (a) σ±22, (b) σ±12, and (c) σ±11. Superscripts ± indicate
evaluation at ±1.0× 10−3. Thickness of the two layers are the same.

that these are not influenced by the artificial singularities. Notice that when the
thickness is reduced degree of the stress concentration is somewhat reduced near
the edge for all the components. However, when h/w = 0.01 the magnitude of the
compressive stress σ11 in the thin Al2O3 layer increases throughout the entire thin
layer which could trigger buckling of this layer upon the development of debonding
at the interface edge or could cause extensive plastic deformation, not only near
the edge, but throughout the layer. The presence of this high compressive stress
σ11, for the thin layer whose shear modulus is higher than that of the stratum,
has not been reported in the past and we believe is an additional important factor
in explaining various fracture mechanisms. Figs. 13, 14 and 15 show distributions
of σ22, σ12 and σ11 in the entire plate for the case of h1 = 0.1.

M.Denda / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 112-131 (2003)

121



-1 -0.5 0 0.5 1
x/w

-1

-0.5

0

0.5

1

y/
w

σ22/σ0
1.59938
1.55038
1.50137
1.45236
1.40336
1.35435
1.30535
1.25634
1.20733
1.15833
1.10932
1.06031
1.01131
0.96230
0.91329

Figure 5: Distribution of σ22 in an Al2O3 / Nb square plate in tension. Thickness
of the two layers are the same.
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Figure 11: Effect of the Al2O3 layer thickness h on the interface stress for Al2O3

/ Nb bonded systems in tension. Stress components σ22 and σ12 are evaluated at
y/w = +1.0 × 10−7 for h1 = w and h1 = 0.1w and at y/w = +1.0 × 10−10 for
h1 = 0.01w.
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Figure 12: Effect of the Al2O3 layer thickness h on the interface stress for Al2O3

/ Nb bonded systems in tension. σ11(Al2O3), σ11(Nb) are evaluated at y/w =
±1.0×10−7 for h1 = w and h1 = 0.1w and at y/w = ±1.0×10−10 for h1 = 0.01w.

M.Denda / Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 112-131 (2003)

125



-1 -0.5 0 0.5 1
x/w

-1

-0.8

-0.6

-0.4

-0.2

0

y/
w

σ22/σ0
1.1270
1.0988
1.0706
1.0424
1.0142
0.9859
0.9577
0.9295
0.9013
0.8731
0.8449
0.8167
0.7885
0.7603
0.7321

Figure 13: Distribution of σ22 in anNb plate coated with an Al2O3 layer in tension.
Thickness of the coating is h1 = 0.1w.
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Figure 14: Distribution of σ12 in anNb plate coated with an Al2O3 layer in tension.
Thickness of the coating is h1 = 0.1w.
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Figure 15: Distribution of σ11 in anNb plate coated with an Al2O3 layer in tension.
Thickness of the coating is h1 = 0.1w.

6 Concluding Remarks

We have formulated a Green’s function BEM for the bimaterial domains with
the straight interface. The displacement Green’s functions are derived using the
complex variable methods in elasticity so that the displacement and traction con-
tinuity conditions on the interface are automatically satisfied. There is no need to
model the interface. We have applied the BEM to the edge stress concentration
problems. We have revealed the accurate details of the edge stress concentration
at the free edge of the interface even in the limit of the very thin layers. The
application of the BEM for a wider class of bimaterial problems is expected.
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Appendix

A Complex potential functions for the line force
and dislocation

Consider an infinite domain consisting of two semi-infinite blocks of isotropic but
different elastic solids with straight interface. Let the x1 axis be located on this
interface and the elastic moduli of the material occupying the upper (R1) and the
lower (R2) half planes be ( µ1, ν1 ) and ( µ2, ν2 ), respectively, where µ and ν
are the shear modulus and Poisson’s ratio and the subscripts 1 and 2 identify the
materials in R1 and R2, respectively. Consider a line force f = fx + ify and a
line dislocation with Burgers vector b = bx + iby, respectively, located at ζ in R1.
In the complex variable formalism of isotropic elasticity (Muskhelishvili [16] and
England [17]) the displacement Green’s functions of the line force and dislocation
are given by

2µ(u1 + iu2) = κ φ(z)− zφ′(z)− ψ(z) , (15)

in terms of analytic functions φ(z) and ψ(z). To obtain these functions we enforce
the continuity of the displacement and the traction along the interface. The ap-
plication of the standard procedure yields the analytic functions (φ1, ψ1) and (φ2,
ψ2) in regions R1 and R2, respectively, according to

φ1(z, ζ) = φ1s(z, ζ) + φ1i(z, ζ) , ψ1(z, ζ) = ψ1s(z, ζ) + ψ1i(z, ζ) (z ∈ R1) ,
φ2(z, ζ) = φ1s(z, ζ) + φ2i(z, ζ) , ψ2(z, ζ) = ψ1s(z, ζ) + ψ2i(z, ζ) (z ∈ R2) ,

where the singular terms

φ1s(z, ζ) = −γ1 log(z − ζ) ,

ψ1s(z, ζ) = −k1 γ̄1 log(z − ζ) + γ1
ζ̄

z − ζ
+ γ1 , (16)
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correspond to the solution in the infinite body when the two materials are identical.
The image terms

φ1i(z, ζ) = δ1
{
ψ̄1s(z, ζ) + z φ̄′1s(z, ζ)

}
,

ψ1i(z, ζ) = − δ1 z
∂

∂z

{
ψ̄1s(z, ζ) + z φ̄′1s(z, ζ)

}
+ λ1 φ̄1s(z, ζ) ,

φ2i(z, ζ) = λ1 φ1s(z, ζ) ,
ψ2i(z, ζ) = δ1 ψ1s(z, ζ) + (δ1 − λ1) z φ1s

′(z, ζ) , (17)

represent the modification due to the introduction of a different material in R2.
The coefficients γ1 and k1 are defined by (7) and δ1 and λ1 by (9). For a function
F(z) of z we use the notation that

F̄(z) = F(z̄),

such that, for the principal branch of the logarithm, we have

φ̄1s(z, ζ) = φ1s(z̄, ζ) = − γ1 log(z − ζ̄) ,

ψ̄1s(z, ζ) = ψ1s(z̄, ζ) = − k1 γ1 log(z − ζ̄) + γ1

ζ

z − ζ̄
+ γ̄1 .

The prime attached to a function indicates its derivative with respect to z. The
solution when the line force and dislocation are in R2 can be obtained by inter-
changing the indices 1 and 2 in the above results.

B Coefficients for constant boundary element

Let the element Lj and the observation point zk be in R1, then the coefficients in
the system of boundary equations (13) are given by

Mkj =
e−iφj

2π(κ1 + 1)µ1

[
κ1

{
{fj(zk) + f0j(zk)}+ e2iφj{fj(zk) + f0j(zk)}

}
−δ1

{
κ2

1e
2iφj f̄j(zk)− (z − z̄){(e−2iφj − 1)sj(z̄k) + qj(z̄k)}

}
− λ1fj(z̄k)

]
,

Nkj =
e−iφj

2π(κ1 + 1)µ1

[{
e−2iφj{fj(zk) + f0j(zk)} − {hj(zk) + h0j(zk)}

}
+δ1κ1

{
−e−2iφjfj(z̄k) + wj(z̄k)− (z − z̄)e2iφj s̄j(zk)

}]
,

Kkj =
i

π(κ1 + 1)

[{
κ1{sj(zk) + s0j(zk)} − {sj(zk) + s0j(zk)}

}
+δ1 {κ1s̄j(zk) + (z − z̄)Qj(z̄k)} − λ1sj(z̄k)] ,

Lkj = − i

π(κ1 + 1)
[
pj(zk) + δ1

{
κ1 qj(z̄k)− (z − z̄)S̄j(zk)

}]
. (18)

Let Lj be in R1 and the observation point zk be in R2, then we have

Mkj =
e−iφj

2π(κ1 + 1)µ2

{
κ2(λ1 + 1)fj(zk) + κ1(δ1 + 1)e2iφjfj(zk)

}
,
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Figure 16: Integration across the branch line of the logarithmic functions.

Nkj =
e−iφj

2π(κ1 + 1)µ2

[
−(δ1 + 1)

{
−e−2iφjfj(zk) + wj(zk)

}
+ (λ1 + 1)(z − z̄)sj(zk)

]
,

Kkj =
iµ1

π(κ1 + 1)µ2

{
κ2(λ1 + 1)sj(zk)− (δ1 + 1)sj(zk)

}
,

Lkj =
iµ1

π(κ1 + 1)µ2
{(δ1 + 1)pj(zk) + (λ1 + 1)(z − z̄)Sj(zk)} , (19)

where

sj(z) = [log(z − ζ)]ζj+1
ζj

, s0j(z) = [log(z − ζ)]ζbf

ζaf
,

fj(z) = [(z − ζ) log(z − ζ) + ζ]ζj+1
ζj

, f0j(z) = [(z − ζ) log(z − ζ)]ζbf

ζaf
,

hj(z) = [(z − ζ) log(z − ζ) + ζ]ζj+1
ζj

, h0j(z) = [(z − ζ) log(z − ζ)]ζbf

ζaf
,

wj(z) = [(z − ζ̄) log(z − ζ) + ζ]ζj+1
ζj

, qj(z) = −[
ζ − ζ̄

z − ζ
]ζj+1
ζj

, (20)

Sj(z) = [
1

z − ζ
]ζj+1
ζj

, Qj(z) = −[
ζ − ζ̄

(z − ζ)2
]ζj+1
ζj

, Pj(z) = [
z − ζ

(z − ζ)2
]ζj+1
ζj

.

Note that terms s0j(z), f0j(z) and h0j(z) appear only when the observation point
z is located to the left of the boundary element Lj (region R0 in Fig. 16). This is
caused by the jump in the argument of the logarithm as the source point ζ moves
along Lj during the integration. When this jump occurs the integration has to be
stopped before the jump (i.e. at ζbf ) and then be restarted after the jump (i.e. at
ζaf ) as shown in Fig. 16. The results when the element Lj is located in R2 are
obtained from the above by interchanging the indices 1 and 2.
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