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Abstract 
 
The development of boundary element methods as seen by one researcher in the field is 
described, from publication of the first results in 1963 to the present day.   Details are 
given of the circumstances in which research was carried out.   The objectives of the 
research are outlined, and the strategy according to which progress was made towards 
those objectives is explained.   An assessment is made of what has actually been 
achieved, and topics for future research are proposed. 
 
 
Introduction 
 
The approximate numerical solution of boundary value problems for partial differential 
equations became a practical proposition towards 1960, as advances in solid state 
circuitry made it possible to construct reasonably reliable computers with enough 
memory to store thousands of instructions and items of data, and the first high-level 
programming languages were developed.   It was natural to replicate on the computer 
the existing procedures of hand computation, and among the first to consider the use of 
computers were structural engineers who were familiar with matrix and iterative 
methods of analysis of frameworks.   The idea of a one dimensional structural member 
was generalised to an element of a multidimensional continuum, and so it was that 
finite elements for solid mechanics came into being. 
 
The first researchers to propose the solution of a boundary integral equation were 
mathematicians.   By the time their work was published, the development of the finite 
element method was well under way.   Furthermore, finite elements are relatively easy 
to develop, and before long some quite general software packages were available.   
However, some determined individuals struck out in a different direction, and 
attempted to turn the boundary integral equation method into a practical means of 
engineering analysis.   This paper is a brief account of the efforts of a few of those 
researchers during the past forty years. 
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Origins 
 
For practical purposes, the development of boundary element methods began with the 
work of Jaswon, Ponter and Symm [1, 2, 3] of the Department of Mathematics at 
Imperial College, London.   In their solutions of boundary value problems for Laplace’s 
equation in two dimensions, these authors adopted what has come to be known as the 
direct formulation, in which the function to be computed and the fundamental solution 
(Green’s function for an infinite domain) are substituted into Green’s symmetric 
identity to yield a boundary integral equation.   The numerical implementation was very 
simple, with the potential and its normal derivative taken to be uniform over each 
boundary segment, but nevertheless the method was shown to be a promising 
alternative to finite elements and finite differences.   By 1963 when this work was 
published, though, attention was already focused on finite elements and in any case few 
engineers understood anything about integral equations.   Despite the clarity with which 
Jaswon et al presented their ideas, this early work was largely ignored.  
 
 
Research at Southampton 
 
I was introduced to boundary integral equations in 1966, as a research student at the 
University of Southampton under Hugh Tottenham of the Department of Civil 
Engineering.   Of the research topics on offer, I chose the analysis of stress in 
prestressed concrete pressure vessels for gas cooled nuclear reactors.   Tottenham 
possessed a remarkable library of Soviet books, and encouraged research students to 
explore possible applications of the work of Muskhelishvili [4], Kupradze [5] and 
others.   I laboured through Muskhelishvili’s complex variable theory, and struggled 
with Kupradze’s tortuous mathematical notation without the benefit of being able to 
read the text.   I eventually understood that the desired three dimensional elastic 
analysis could be reduced to the solution of a singular boundary integral equation for a 
fictitious force density function, followed by the computation of physically meaningful 
results from the proposed integral representation of displacement.   This was the 
indirect method: I had read the papers by Jaswon et al, but failed to recognise that their 
approach was the more practical. 
 
At that stage I became fascinated and somewhat preoccupied by the mathematical 
detail.   This was not altogether unproductive, as I pondered among other things the 
problems posed by edges and corners and came to understand that the fictitious force 
densities would probably tend to infinity near such features.   My attempts to determine 
the nature of the supposed singularities, however, were unsuccessful.   Rather late in the 
day, I turned to the question of numerical implementation.   The university had an 
excellent computer, an ICL1905E, capable of somewhere between 200000 and 400000 
floating point operations per second and very reliable too.   Departmental policy was 
that software be written in Algol.   By my association with students researching into 
finite elements I knew of interpolation using shape functions, and Tottenham had 
suggested that Gaussian quadrature formulae [6] could be of interest, but I failed to see 
the relevance of these techniques at the time.   The guiding principle was to be that, 
since the dimension of the numerical problem was reduced from three to two, the 
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boundary integral method would outperform finite elements without recourse to such 
sophistication. 
 
Contemporaries at Southampton included Banerjee, who applied a specialised version 
of the indirect method to the analysis of pile groups, and Brebbia who worked on finite 
elements for shells but later became a proponent of boundary element methods: indeed, 
it has been said that Brebbia was the inventor of the term ‘boundary element’. 
 
 
Early outcomes 
 
The method as implemented at Southampton did not live up to expectations.   My 
research [7] was completed during spare time whilst I worked in London as an 
engineering applications programmer (in FORTRAN).   At least the lesson had been 
learned that the much-vaunted reduction of the dimension of the numerical problem 
would not by itself assure the success of boundary element methods. 
 
The work of Jaswon et al had been ignored in UK, but in USA it was taken up by Rizzo 
[8] for plane strain of an elastic material and then by Cruse [9] for the general three 
dimensional case.   The starting points for Rizzo’s work are Betti’s theorem which is 
analogous to Green’s symmetric identity, and the fundamental solution for plane strain.   
Rizzo presents a useful discussion of such theoretical aspects as conditions for 
existence of a solution, and notes the need to evaluate a Cauchy principal value in the 
boundary integral equation of elastostatics.   He points out that his cautious approach to 
numerical implementation is intended only as a demonstration of feasibility, and that 
computational efficiency could probably be improved by mesh gradation.   Concern is 
expressed about the possibility of ill-conditioning of simultaneous equations. 
 
In three dimensional analysis undoubtedly inspired by the work of Rizzo, Cruse 
approximates the surface by plane triangular elements, over each of which displacement 
and traction are taken to be uniform.   In the system of simultaneous equations for 
displacement and traction, coefficients of traction are scaled so that all equation 
coefficients are in the same order of magnitude, to avoid ill-conditioning.   Whereas 
Rizzo generally computes equation coefficients by Simpson’s rule, Cruse evaluates 
them analytically.   Displacement and stress at interior points, though, are still 
computed by numerical integration. 
 
By 1970, there was interest not just in proving that boundary element methods work, 
but in making them work better.   A first step in that direction was taken by Riccardella 
[10], who developed a program for the analysis of plane strain in which displacement 
and traction were taken to vary linearly over each element.   The price to be paid for 
improved accuracy and computational efficiency was more complicated integration, 
and new logic to accommodate the possibility that nodes at which the integral equation 
is written were located at corners of the boundary.   That possibility now arose because 
nodes were at the ends of elements, instead of at the midpoints.   The elements were 
still straight, so relatively large numbers of them were required to model curved 
boundaries.   Riccardella’s program with the addition of joint elements lives on today in 
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Australia, as BITEMJ.   Attempts were also made to broaden the scope of the method.   
Given the difficulties of application of the finite element method to problems of 
fracture mechanics, Cruse and others began to consider how boundary elements might 
be used to analyse cracks, for which boundary element methods in their basic form 
yield more unknowns than equations. 
 
 
Centre Technique des Industries Mécaniques 
 
Towards the end of 1971 I was contacted by Brebbia, who asked that I pay him an 
overnight visit to discuss the implementation of boundary element methods with his 
external Ph.D student, Jean-Claude Lachat.   Grudgingly, I obliged.   Lachat discussed 
with me through Brebbia as interpreter some aspects of boundary elements, and then 
produced a job application form, requesting that I reply to his offer within four weeks.   
The prospect of life in France did not greatly appeal, but given the salary offered and 
the shaky financial state of the company for which I was working in London I decided 
to accept. 
 
Lachat, a mathematician and keen sportsman, was head of the Département Théorique 
et Engrenages, a group of about ten engineers who developed software and acted as 
consultants to the mechanical engineering industry.   Funds had been allocated for the 
development of finite element and boundary element programs for stress analysis in 
three dimensions.   During my first year with CETIM, I wrote a program for three 
dimensional elastic finite element analysis.   My experience as a programmer in London 
served me well.   There were awkward times at first, as Lachat did not take kindly to 
my strategy of designing and writing a program in its entirety before testing any of it, 
and did not understand why I spent so much time incorporating checks on the validity 
of input data, and automatic data generation facilities.   The language barrier, or the 
pretence of a language barrier, was useful in the early days. 
 
 At the beginning of 1973 I started work on boundary elements.   I was to develop 
firstly a program for plane strain, then one for three dimensional analysis.   Lachat 
knew of the work of Rizzo and Cruse, and proposed that the direct formulation be used.   
I readily agreed, having met Cruse in 1972 and discussed with him the direct and 
indirect approaches.   The finite element programming had been most instructive in 
respect of shape functions, Gaussian quadrature and out-of-core simultaneous equation 
solution techniques.   It seemed clear that the boundary elements should be 
isoparametric, with at least quadratic variation so that curved surfaces could be 
modelled accurately.   Analytical integration was then out of the question, and Gaussian 
quadrature was far superior to Simpson’s rule.   Adaptations of Gaussian quadrature 
could integrate weakly singular functions, but Cauchy principal values could not be 
computed directly by quadrature.   If problems of practical size were to be analysed, the 
simultaneous equation coefficients would have to be held on disc. 
 
Lachat did not agree with this view, or perhaps he considered the proposed strategy too 
adventurous.   I designed the program so that once it had been shown to work with 
constant elements it could easily be converted to my proposed specification.   All went 
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according to plan, and once the isoparametric elements had been demonstrated it was 
agreed that they should be retained.   The problem of Cauchy principal values was 
solved by not calculating them.   The simultaneous equations were equations of nodal 
collocation as in BITEMJ, and nodes of quadratic isoparametric elements could be at 
corners of the boundary.   An equation of collocation is of the form 
 
                   cij(x)uj(x)  +  ∫ Tij(x,y)uj(y) dSy   =   ∫ Uij(x,y)tj(y) dSy                                  (1)    
                                        S                                 S            
where the Cauchy principal value of the integral on the left side is taken, and cij(x) is 
the limiting value of an integral over that part of the surface of a region of exclusion 
v(x,ε)  which  lies inside the domain of analysis V bounded by S.   For x at a corner, 
cij(x) ≠ δij/2.   It is possible to compute separately cij(x) and the Cauchy principal value, 
but one may ask whether it is necessary given that whereas both quantities depend upon 
the arbitrarily chosen shape of v(x,ε), the physical solution of the boundary value 
problem is independent of that shape.   The simpler alternative became apparent upon 
consideration of the computational procedure.   A leading diagonal submatrix of  
equation coefficients is the sum of cij(x), and integrals of Tij(x,y) multiplied by shape 
functions which equal 1.0 at x.   All other kernel-shape function products are at most 
weakly singular at x and therefore may be integrated by Gaussian quadrature formulae.   
Finally, surface tractions tj(y) due to rigid body translations of the domain V equal zero.   
The procedure is therefore to evaluate by Gaussian quadrature all equation coefficients 
except for those of the leading diagonal submatrix (the explicitly computed 
component), then by consideration of rigid body translations compute the leading 
diagonal submatrix (the implicitly computed component).   An application of the 
program for plane strain to the computation of stress intensity factors for an ASTM 
compact tensile specimen is described by Boissenot, Lachat and Watson [11]. 
 
The program for three dimensional analysis (EITD) was intended to be as versatile as 
the finite element program that had been written earlier.   In particular it was to be 
capable of analysing piecewise homogeneous domains, so the need arose for interface 
elements, at nodes of which both displacements and interface tractions are unknown.   
To achieve economical and robust evaluation of integrals, numbers of Gauss points 
were chosen according to upper bounds for error due to Stroud and Secrest [6].   In 
practice this meant that, for each available Gaussian formula, there was an upper limit 
on the ratio of length of interval over which it was applied to minimum distance from 
the interval to the collocation point.   Program EITD ran on a CDC7600, capable of 
about 5 megaflops but with just 64K of word addressable memory (SCM), 60 bits per 
word.   The upper limit on subregion (homogeneous subdomain) mesh size was 75 
quadratic isoparametric elements: this could probably have been increased to 150 
without unacceptable disc file input-output time.   In the solution of larger problems, it 
was necessary artificially to subdivide the domain of analysis into subregions to stay 
within problem size limits [12,13].   This is undesirable, because displacements at 
points inside the domain of analysis which lie on interfaces are constrained to vary only 
as permitted by the interpolations over interface elements. 
 
Zienkiewicz occasionally visited CETIM to give lectures on finite elements.   He took 
an interest in our development of boundary elements, and later initiated research at 
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Swansea into coupling of the methods.   Coupling is intended to make best use of both 
methods, especially in nonlinear analysis for which it has generally been considered 
that boundary elements are unsuitable.   There was occasional contact with Cruse at 
Pratt and Whitney Aircraft, and at some time after my return to UK in 1975 a copy of 
EITD found its way across the Atlantic.   This was subsequently modified by Wilson 
and Cruse [14] to analyse problems for anisotropic elastic material.   After both Lachat 
and myself had left CETIM, the development of boundary elements came to an end. 
 
 
Imperial College 
 
My intention in returning to UK was to enter the mainstream civil engineering industry.   
However, once the results of the work at CETIM had been published I was contacted by 
two departments of Imperial College, Mathematics and Mineral Resources Engineering.   
The Department of Mineral Resources Engineering obtained for me a research 
fellowship, and I joined IC in 1978.   For mining engineers, an attraction of boundary 
elements was the ease with which they could be used to analyse problems of infinite or 
semi-infinite extent.   Surfaces and interfaces between different materials could also be 
of infinite extent, so in Program THREE were implemented, in addition to the 
quadrilateral and triangular elements of EITD, infinite boundary elements with 
displacement either tending to zero at infinity, or corresponding to states of plane and 
antiplane strain.   The latter type of infinite element is useful in the analysis of problems 
which are only locally three dimensional, such as tunnel intersections. 
 
At this stage it seemed appropriate to ask the question, was this new method of stress 
analysis successful?   All depends upon what is considered to be success, and different 
people will give different answers.   Since engineering is not a fine art, success should 
be measured according to industrial rather than academic criteria and the answer should 
perhaps be no.   Almost all numerical modelling in solid mechanics was being carried 
out by the finite element method, as implemented in packages such as NASTRAN, 
ADINA and MARC.   The next question to ask was, why?   One reason was that a vast 
amount of effort had been put into overcoming the inconveniences of finite element 
analysis, principally by means of elaborate pre- and postprocessing graphics.   Since 
there is no point in re-inventing the wheel, an answer might be to team up with a 
provider of such graphics, and interface their software to boundary element analysis.   
That is only possible if the boundary element method has credibility, so firstly it has to 
be demonstrated that boundary elements will solve problems of practical size (as 
opposed to academic examples) more economically than finite elements.   Since it was 
not clear that Program THREE could do that, attention turned to the achievement of 
further improvements of performance. 
 
Experience indicated that linear elements are more efficient than constant, and 
quadratic are more efficient than linear.   For large problems, simultaneous equation 
solution takes far more computer time than any other part of a boundary element 
analysis, so every effort must be made to minimise the total number of degrees of 
freedom.   Increases in the degree of functional variation over each element result in a 
preponderance of nodes on sides of serendipity quadrilaterals, and of nodes both on 
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sides of and inside Lagrangian quadrilaterals.   Whereas nodes and so degrees of 
freedom at corners are shared by about four neighbouring elements, nodes on sides are 
shared by only two and interior nodes are not shared at all.   The total number of 
degrees of freedom therefore increases rapidly.   It is preferable to concentrate all the 
degrees of freedom at corners of elements, and one way to achieve this is to construct 
shape functions from Hermitian polynomials [15].   The degrees of freedom of 
Hermitian cubic elements include tangential derivatives of displacement, and on a 
smooth part of the surface computed displacements are C1 continuous between 
elements.   The immediate reason for a move to Hermitian elements, though, was to 
reduce the total number of degrees of freedom, so that for example if a mesh of 
quadratic elements were replaced by the same number of Hermitian cubic elements, the 
total number of degrees of freedom would be unchanged despite the substitution of 
cubic for quadratic functional variation over each element.   In practice, satisfactory 
accuracy could then be achieved using a coarser mesh. 
 
As what was intended to be a preliminary exercise, a program for the analysis of plane 
strain was developed.   There would be four unknowns at each node, but the usual 
method of nodal collocation would yield only two equations.   Two schemes were 
considered: a Galerkin formulation in which each of the simultaneous equations would 
be a linear combination of equations of collocation at Gauss points of elements, and 
nodal collocation of both equation (1) and the hypersingular equation obtained by 
tangential differentiation of equation (1).   The latter scheme was chosen and the two 
integral equations were written in the form 
 
                    lim  ∫ [Tij(x,y) uj(y) – Uij(x,y) tj(y)] dSy  =  0                                            (2)               
                   ε → 0  S – S(x,ε) + s(x,ε)         
 
                    lim  ∫ [Vij(x,y) uj(y) – Wij(x,y) tj(y)] dSy  =  0                                            (3)           
                   ε → 0  S – S(x,ε) + s(x,ε)            
 
where S(x,ε) is the part of the surface of the region of exclusion v(x,ε) which lies on S 
(and would be excluded in the definition of a Cauchy principal value), and s(x,ε) is the 
part of the surface of v(x,ε) which lies inside V.   The kernels Vij(x,y) and Wij(x,y) are the 
tangential derivatives of Tij(x,y) and Uij(x,y), and it is understood that the 
differentiations take place before ε tends to zero.   In equation (3), Vij(x,y) is 
hypersingular and Wij(x,y) is strongly singular like Tij(x,y).   Equation (2) is equivalent 
to equation (1), and for equation (3) the implicitly computed component is taken to 
include the integral over s(x,ε), integrals of Vij(x,y) multiplied by shape functions the 
value or tangential derivative of which equals 1.0 at x, and integrals of Wij(x,y) 
multiplied by shape functions which equal 1.0 at x.   By consideration of a Taylor series 
expansion, it can be shown that the implicitly computed component of equation (3) is of 
the form 
 
                                   aij(x)uj(x)  +  bij(x)wj(x)  +  cij(x)tj(x) 
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where uj(x), wj(x) and tj(x) are displacement, tangential derivative of displacement and 
traction at x respectively.   Just as for equation (2) the coefficients of the leading 
diagonal submatrix are determined by consideration of rigid body translations, so for 
equation (3) the coefficients aij(x), bij(x) and cij(x) are computed by consideration of 
trial displacement fields, these being rigid body translations and rotations, and 
displacements due to uniform stress fields.   This procedure is exactly that later referred 
to as the method of simple solutions [16]. 
 
For the program to be useful, it would be necessary to develop special elements for the 
modelling of re-entrant corners, which are common in mines.   Already with quadratic 
elements the computed results near such corners were poor, and with Hermitian cubic 
elements they would be worse.   According to the theory of elasticity, stresses tend to 
infinity at notch roots [17].   In Program PLANE, therefore, additional shape functions 
which exhibit the same singular behaviour as the theoretical solution were defined over 
elements adjacent to notch roots.   These functions multiply stress intensity factors, the 
values of which are computed simultaneously with nodal displacements and tractions.   
From this development followed one of interest to the wider engineering community: a 
crack is the limiting case of a notch, so PLANE could also compute directly, without 
any form of postprocessing, stress intensity factors at crack roots [18]. 
 
 
Mount Isa Mines 
 
In 1982, the slow progress on Hermitian elements was interrupted by an opportunity not 
to be missed: an Australian mining company wished to obtain a licence to run THREE.   
There was a problem.   MIM were quite impressed by THREE, but they wanted to carry 
out analyses somewhat larger than anything previously envisaged.   Stresses were to be 
computed in rock surrounding at least 30 stopes (underground cavities) of various 
shapes.   There was no time  to develop Hermitian cubic elements for three dimensional 
analysis.   Someone, possibly Gernot Beer who was advising MIM in the matter, put 
forward an idea that I had once pondered but never acted upon, to lump offdiagonal 
submatrices of small equation coefficients to yield a sparsely populated matrix. 
 
In the absence of estimates of error due to lumping, it was deemed prudent to use the 
approximate lower and upper triangular factors obtained by bifactorisation of the 
lumped matrix to compute search vectors in an iterative solution [19].   If the iteration 
converged, the results would be the same as those which would have been obtained 
without lumping.   Fortunately this worked and there only remained to develop a 
version of THREE that would run on MIM’s Unisys machine, with as large problem 
size limits as possible.   This was not easy, as THREE incorporated much CDC-specific 
code which for optimal performance had to be replaced by equivalent Unisys-specific 
code.   The program also had to fit into 256K of 36 bit words.   In the initial version the 
problem size limit was 250 elements per subregion, and in a later version 400 elements.   
This was not enough to model 30 stopes, but adequate for most purposes. 
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Boundary elements from 1980 to the present day 
 
Research into boundary elements perhaps reached its height between 1980 and 1990.   
The systems BEASY (UK), BETSY (Germany) and BEST3D (USA) were under 
development during this period.   Several textbooks were written, and since an apparent 
disadvantage of boundary elements was that they could only be used to solve efficiently 
linear problems, much effort was expended on transient and nonlinear analysis.   
Mathematicians such as Wendland [20] sought to substantiate the work of engineers by 
rigorous analysis, but not many engineers were sufficiently well versed in mathematics 
to understand the significance of their conclusions.   The indirect formulation was 
largely forgotten, except under the guises of panel methods in aerodynamics [21], the 
displacement discontinuity method for slots left by mining of tabular orebodies, and the 
body force method used to calculate many of the results presented in compendia of 
stress intensity factors such as that compiled by Murakami [22]. 
 
The Galerkin method came into favour, and certainly for a given mesh it is more 
accurate than nodal collocation.   In some respects the numerical implementation is 
simpler, but in an efficient computational scheme there must be a scatter process 
whereby factored equations of collocation at Gauss points are added to equations 
indexed on nodes.   This introduces complications if, as is likely to be the case for large 
problems, the equations cannot be held in byte addressable memory.   At one stage 
there was interest in Overhauser elements, the shape functions of which are constructed 
from B-splines.   These elements offer C2 interelement continuity of displacement, and 
rate very well by the measure of degrees of freedom per element, but there are onerous 
restrictions on the topology of a mesh in three dimensional analysis.   By contrast, there 
are no restrictions on the way in which Hermitian cubic elements are assembled to form 
a mesh, because each element is stand-alone like a piece of Lego.  
 
Hypersingular integral equations assumed an important role in the analysis of cracks, 
for which the singular equation alone does not provide enough information to calculate 
displacements of both faces.   The hypersingular equation usually chosen is the traction 
equation, but there are other possibilities.   The evaluation of hypersingular integrals is 
something of a challenge: methods that have been proposed include Hadamard finite 
parts, simple solutions as referred to earlier, and the application of Stokes’ theorem.   
Simple solutions are to be preferred, because boundary element methods are 
complicated enough already. 
 
The version of Program PLANE described earlier could only analyse cracks in planes 
of symmetry.   The current version analyses cracks of arbitrary geometry, by reference 
to equations (2), (3) and two more hypersingular equations obtained by differentiation 
of equations (2) and (3) in the direction normal to a crack.   Subdominant modes of 
crack opening displacement are taken into account, and the singular shape functions 
which multiply stress intensity factors extend over many elements on each face of the 
crack [23].   Program THREE now does everything that is done by PLANE, except in 
that the elements are still quadratic [24].   Although Hermitian cubic elements are not 
the complete answer to the problem of simultaneous equation solution time, they have 
performed very well in other respects and their incorporation into THREE is high on 
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the wish list.   The iterative solution procedure of THREE does not perform so reliably 
in the analysis of finite body problems as in that of infinite domains.   Attempts are now 
being made to develop a robust iterative scheme, as therein probably lies the key to 
economical solution of very large problems. 
 
From about 1990 onwards, progressively larger analyses could be carried out on a 
personal computer instead of a mainframe.   A PC is just a mainframe on a desk, but 
software that ran efficiently on a mainframe did not necessarily do so on a PC.   
Mainframe word or byte addressable memory was expensive and therefore of very 
limited capacity, but to compensate for that, the data transfer rate between that memory 
and disc storage was high and it was usually possible to perform simultaneously 
arithmetic and input-output by means of double buffering.   On a PC, RAM is cheap so 
there is more of it, whereas input-output to disc is relatively slow.   It required 
considerable effort to adapt matrix construction and simultaneous equation solution 
schemes to perform well in the new environment.   In Program THREE, the work that 
had been done to optimise vectorisation on the Cray turned out to be largely a waste of 
time.   Fortran 90, in which principles of object oriented programming are formalised, 
was introduced.   OOP is a laudable aim but, to the annoyance of those of us who were 
at ease programming in a language with practically no safeguards and few strictly 
enforced rules, some useful tricks were not allowed in the new scheme of things.   
Nevertheless, the Fortran 90 manual does describe a logical framework which can be 
used to advantage when writing Fortran 77.   There are many home-made objects in 
THREE and PLANE. 
 
 
The future 
 
Success in the sense of widespread industry acceptance still eludes the boundary 
element community, but the day when the computational advantages over finite 
elements in some applications become too attractive for end users to ignore may not be 
far away.   The early view that boundary elements must be superior because they reduce 
the dimension of the numerical problem to be solved was rather simplistic.   Matrices of 
equation coefficients generated by boundary element methods are fully populated, and 
also some finite element solvers now in use are several times faster than the original 
frontal solver of Irons. 
 
But boundary elements have other advantages.   It is easier to generate mesh over a 
surface than through a volume.   In a boundary element analysis, the governing 
differential equation is exactly satisfied at every point of the domain, so the mesh of 
boundary elements required to achieve satisfactory accuracy is coarser than that of 
finite elements with the same degree of functional variation.   Furthermore, the 
maximum stresses are usually at the surface of a body subjected to load, and at stress 
concentrations, the rate at which stresses increase as the surface is approached is 
invariably high.   In the finite element method, interpolation within elements imposes 
constraints upon the computed variation of displacement and stress as the surface is 
approached, so unless the mesh is very fine, the computed surface stresses are too low.   
This effect is compounded by the need to calculate stresses at Gauss points and then 
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extrapolate to the surface.   In boundary element analysis, these sources of error do not 
exist. 
 
It was suggested earlier that input data for boundary element software might be 
generated by an existing interactive graphical package.   In recent years, efforts have 
been made to integrate seamlessly the entire CAD-CAM process of initial development 
of a concept, analysis and refinement of the design, and numerically controlled 
manufacture.   It is now commonly expected, for example, that software for engineering 
analysis will take as input data a faceted model of an object, which has been generated 
from the original data created by a drafting package.   The faceted model, often defined 
by an IGES file, typically consists of flat triangular patches and is not an exact 
representation of the proposed design.   In finite element analysis, a mesh of four node 
tetrahedral elements is usually then generated through the volume of the object.   
Theoretically there are stress singularities at artificial notch roots between facets, but 
the computed stresses are uniform within each tetrahedral element and so the presence 
of singularities is not reflected in the results.   Even if quadratic finite elements are 
used, computed results are still reasonably smooth.   Boundary element methods, 
however, try to compute faithfully the local variations of stress resulting from the 
imperfections of the faceted model, and the user then complains about curious peaks of 
stress on smooth surfaces.   Of course the fault lies not with the boundary element 
method, but with the faceted model.   The ideal remedy would be to have the boundary 
element software take as input the exact geometric model from the drafting package, 
and generate the mesh directly from that data.   A less satisfactory solution is to read the 
IGES file, and try to determine which edges and notch roots of the faceted model are 
artificial and which are real, in an attempt to recreate the original geometry. 
 
Most of us who develop boundary elements have a feel for how a mesh should be 
graded to yield the best possible results for a given number of elements.   It may be a 
surprise to many of us, but this intuitive ability is not a common human attribute, even 
among engineers in industry.   There is therefore a need for automatic mesh gradation, 
according to criteria that might even be derived a priori from the boundary integral 
equation itself.   Development of such criteria may require some understanding of 
functional analysis, the results of which are generally expressed in a mathematical 
language few engineers understand. 
 
Researchers into boundary elements have tended to advance on a wide front, as if the 
primary objective were to demonstrate that boundary elements, like finite elements, can 
do practically everything.   If we wish to encourage the widespread use of boundary 
elements in industry, we should identify and concentrate our efforts on applications in 
which they have a special advantage.   Fracture mechanics is an obvious candidate.   
Very little explicit modelling of cracks is currently carried out by the finite element 
method, because it is difficult.   Instead, estimates of stress intensity factors and fatigue 
life are made by postprocessing software, on the basis of computed stresses in 
uncracked components.   It is, though, quite practical to model cracks explicitly by 
boundary element methods.   Moreover, it should be easy to introduce into boundary 
element analysis cohesive elements and plastic zones at crack roots.   Boundary 
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elements also have an advantage in moving boundary problems and optimisation, 
because it is easier to modify a surface mesh than to modify one through the volume. 
 
 
Conclusion 
 
The development of boundary element methods has been under way for forty years, but 
the number of researchers in the field has always been relatively small.   Early progress 
could have been more rapid, had there been a greater awareness of numerical 
techniques being used by others.   The direct formulation, as first proposed by Jaswon, 
Ponter and Symm and then applied to elasticity by Rizzo and Cruse, is not necessarily 
more accurate or efficient than the indirect formulation, but it is easier to implement 
and for that reason it is the more widely used. 
 
Whereas in the early stages it was considered by some that boundary elements would be 
easier to implement than finite elements, it is now known that the reverse is true.   The 
rate of progress continues to be limited not by any lack of mathematical ingenuity, but 
by a scarcity of researchers capable of turning the mathematics into efficient software.   
As a result, the common perception has become that boundary elements are a good idea 
in principle but not in practice.   That can be changed, especially if at first we 
concentrate our efforts on niche applications for which the comparison with finite 
elements is particularly favourable. 
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