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Abstract. The determination of an unknown spacewice dependent force func-
tion acting on a vibrating string from over-specified Cauchy boundary data is
investigated numerically using the boundary element method (BEM) combined
with a regularized method of separating variables. This linear inverse problem
is ill-posed since small errors in the input data cause large errors in the output
force solution. Consequently, when the input data is contaminated with noise we
use the Tikhonov regularization method in order to obtain a stable solution. The
choice of the regularization parameter is based on the L-curve method. Numerical
results show that the solution is accurate for exact data and stable for noisy data.
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1 Introduction

The wave equation governs many physical problems such as the vibrations of a
spring or membrane, acoustic scattering, etc. When it comes to mathematical
modeling probably the most investigated are the direct and inverse acoustic scat-
tering problems, see e.g. [5].

On the other hand, inverse source/force problems for the wave equation have
been less investigated. It is the objective of this study to investigate such an inverse
force problem for the hyperbolic wave equation. The initial attempt is performed
for the case of a one-dimensional vibrating string, but we have in mind extensions
to higher dimensions in an immediate future work. The forcing function is assumed
to depend only upon the single space variable in order to ensure uniqueness of the
solution. The theoretical basis for our numerical investigation is given in [4] where
the uniqueness of solution of the inverse spacewise dependent force function for the
one-dimensional wave equation has been established. The authors of [4] have also
given conditions to be satisfied by the force function in order to ensure continuous
dependence upon the data and furthermore, they proposed two methods based on
linear programming and the least-squares method. However, no numerical results
were presented and it is the main purpose of our study to develop an efficient
numerical solution for this inverse linear, but ill-posed problem.

Because the wave speed is assumed constant, the most suitable numerical
method for discretising the wave equation in this case is the boundary element
method (BEM), see [1-3]. Moreover, because an inhomogeneous source/force term
is present in the governing equation, it is convenient to exploit the linearity of the
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problem by applying the principle of superposition. This recasts into splitting the
original problem into a direct problem with no force, and an inverse problem with
force, but with homogeneous boundary and initial conditions. This is explained in
section 2 where the mathematical formulation of the inverse problem under investi-
gation is also given. Whilst the former problem requires a numerical solution such
as the BEM, as described in Section 3, the latter problem is ameanable to a sepa-
ration of variables series solution with unknown coefficients. Upon truncating this
series, the problem recasts as an ordinary linear least-squares problem which has
to be regularized since the resulting system of linear equations is ill-conditioned,
the original problem being ill-posed. The choice of the regularization parameter
introduced by this technique is important for the stability of the numerical solu-
tion and in our study this is based on the heuristic L-curve criterion, [6]. All this
latter analysis is described in detail in Section 4. Numerical results are illustrated
and discussed in Sections 5 and 6 and conclusions and future work are provided
in Section 7.

2 Mathematical Formulation

The governing equation for a vibrating string of length L > 0 acted upon a space-
dependent force f(x) is given by the one-dimensional wave equation

Ut = CQUJ;J; + f(.l?), T e (07L) X (07 OO)’ (1)

where u represents the displacement and ¢ > 0 is the speed of sound.
Equation (1) has to be solved subject to the initial conditions

U(iL’,O) = UO(x)a T e [OvL]a (2)

ug(2,0) = vo(x), x €0, L], (3)

where ug and vy represent the initial displacement and velocity, respectively, and
to the Dirichlet boundary conditions

w(0,) = po(t), t €[0,00), (4)

pu(L,t) + (1 = pug(L,t) = pr(t), t€[0,00), (5)

where p € {0,1} with g = 1 for the Dirichlet boundary condition and pu = 0 for
the Neumann boundary condition. In (4) and (5), pg and p;, are given functions
satisfying the compatibility conditions

Po(0) = uo(0),  pr(0) = pao(L) + (1 — p)ug(L). (6)

If the force f is given, then equations (1)-(6) form a direct well-posed problem
for u(z,t) which can be solved using the BEM for example, [1]. However, if the
force function f is unknown then clearly the above equations are not sufficient to
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determine the pair solution (u(x,t), f(x)). Then, as suggested in [4], we supply
the above system of equations with the measurement of the flux tension of the
string at the end z = 0, namely

uz(0,t) = qo(t), te€][0,7], (7)

where g is a given function over a time of interest 7' > 0. Then the inverse
problem under investigation requires determining the pair solution(u(z,t), f(x))
satisfying equations (1)-(7). Remark that we have to restrict f to depend on z
only since otherwise, if f depends on both x and ¢, we can always add to u(z, t) any
function of the form t?z2(x — L)2U(z,t) with arbitrary U € C?%1([0, L] x [0, 00))
and still obtain another solution satisfying (1)-(7). Note that the unknown force
f(z) depends on the space variable x, whilst the additional measurement (7) of
the flux go(t) depends on the time variable ¢.

It has been shown in [4] that the problem (1)-(7) has at most one solution, i.e.
the uniqueness holds. Moreover, the solution depends continuously on the input
data if f € C?[0, L] with supp(f) C (0,L) and

max{|f(3:)|,|f’($)|,|f”(m)|, LS [O’L]} <K, (8)

where K is a known positive constant.
Due to the linearity of the inverse problem (1)-(7) it is convenient to split it
into the form, [4],
u=v+w, (9)

where v satisfies the well-posed direct problem

= g, (2,t) €(0,L) x (0,00), (10)
) = w(x), x€[0,L], (11)
ve(z,0) = wolx), x€][0,L], (12)
) (13)
) (14)

= po(t), te€]0,00),

and (w, f) satisfies the ill-posed inverse problem

wi = Fwge + f(2),  (2,) € (0,L) x (0,00), (15)

w(z,0) w(x,0) =0, xz€]0,L], (16)

w(0,t) = 0, tel0,00), (17)

w(L,t) + (1 — pwy(L,t) = 0, te€]0,00), (18)
we(0,t) = qo(t) —v.(0,t), te]0,T]. (19)

The problems (1)-(7), (10)-(14) and (15)-(19) are schematically depicted in Figure
1.

Observe that we could also control the Dirichlet data (4) instead of the Neu-
mann data (7). We remark that the solution of the direct and well-posed problem
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(10)-(14) has to be found numerically, say using the BEM, as described in the next

section.

T

o) = u(0.£)
go(E) = u, (0. £)

g = e C:u.rx +.f(-‘]

pull, £) + 0 — pu, (L £) = p, (#)

(L, 8) + (1 = vy (1,8 =, (@)

0 ulx, 0) = u,lx) L x
'I'Jr(IJU:I = VD{IJ
{} U=rv+w
t
)
pn(!'] = (0, £) Vee = C:FH
0 vlx, 0) = uy(x) L x

Vf(.r; U] = U'L\(X:]
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¥ il
0= w(0,£)
S wee = 62wy, + F(X) ww (L, £) + (1 — WDw, (L) =0
o = bpih,
= w,(0.8)
0 i x

wix, 0) = w,(x. 0} =0

Figure 1: Schematic diagram depicting the problems (a) (1)-(7), (b) (10)-(14), and
(c) (15)-(19).

3 The Boundary Element Method (BEM) for Solv-
ing the Direct Problem (10)-(14)

The BEM for the one-dimensional wave equation (10) is based on the application
of integration by parts and the use of the fundamental solution, ([7], p.893),

. 1
u(@, 658, 7) = — 5 H(c(t — ) — |z =€), (20)
where H is the Heaviside function. This results in the following boundary integral

equation, [1],

1 E+ct
20(&,t) =v(€ —ct,0) +v(€ + ct,0) + — / ve(x,0)dx +v(L,t — (L —&)/c)

c E—ct

t—(L—§)/c t—¢/c
+c/ Ve (L, 7)dT +v(0,t —&/c) — c/ v,(0, 7)dT,
’ (&) 2 (0, L) x (0,00). (21)
Equation (21) is valid if
v(0,0) =v(L,0) =0, d.e up(0)=wug(L)=0. (22)
Otherwise, if this condition is not satisfied then we can work with the modified

function
ug(L) — uo(0)

v(x,t) = v(z,t) — T

x — uo(0) (23)
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which satisfies v(0,0) = v(L,0) = 0.

It is very important to remark that in expression (21) the time and space
coordinates must be within the domain [0, L] x [0,00) and the integrals must
have their lower limit of integration smaller than the upper one. If any of these
conditions are not satisfied the integrals are taken to be zero.

Equation (21) yields the interior solution v(§,t) for (§,t) € (0,L) x (0,00) of
the wave equation (10) in terms of the initial and boundary data. In general, at
a boundary point only one Dirichlet, Neumann or Robin boundary condition is
imposed and the first step of the BEM methodology requires the evaluation of
the missing (unspecified) boundary data. For this, we need first to evaluate the
boundary integral equation (21) at the end points £ € {0, L}. A careful limiting
process yields, [1],

v(0,t) = wv(ct,0)+ i/od v (x,0)dz + v(L,t — L/c)
+c{/0tL/cvm(L,T)dT/Otvm(o,T)dT}, Le(0,00), (24)

L
o(L,t) = v(O,t—L/c)—&—v(L—ct,O)—i—l/ ve(x, 0)dz
CJrL—ct

+c{/0tvI(L,T)dT/OtL/Cvm(o,T)dT}, te(0,00).  (25)

These equations also hold under the assumption (22).

Since we want to calculate v, (0, ) only for ¢ € [0, T}, let us restrict the bound-
ary integral equations (24) and (25) to the time interval [0, T]. For the numerical
discretisation of the boundary integral equations (24) and (25) we divide the time
interval [0,7] into a series of N small boundary elements [t;_1,t;] for j = 1, N,
where for a uniform discretisation t; = jT'/N for j = 0, N. Similarly, we divide
the space interval [0, L] into a series of M small cells [z;_1,z;] for ¢ = 1, M, where
for a uniform discretisation x; = iL/M for i = 0, M. We then approximate the
boundary and initial values as

N N
U(OvT) = Z ¢j (T)’L}?, U(LaT) = Z¢J (T)UJL7 TE [OaT]a (26)
j=1 j=1
N N
v, (0,7) = Zej(T)’U;O, v (L,7) = Z 0/ (T, T e[0T, (27)
j=1 j=1
M , M '
v(x,0) = Zwi(m)vg, ve(z,0) = Zz/}i(x)vf), x € [0, L], (28)
i=1 i=1
where
U? = U(Oatj)v U]I" = U(Lvtj)v v;‘O = Uz(()»tj)? U;'L = UT(Lth)a Jj=1N, (29)
ud = v(x;,0), vl :=vi(x;,0), i=1M. (30)
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The functions ¢7, 67 and 1; are interpolant, e.g. piecewise polynomial, functions
chosen such that ¢7(t,) = 67(t,) = &;,, for j,n = 1, N, ¢;(zm) = &ip, for i,m =
1, M , where 4, is the Kronecker delta symbol. For example, if 67 (7) is a piecewise
constant function then

1 if te(tj—17tj]7

. (31)
0 otherwise,

9]'(7.) = X(tj—17tj](7—) = {

where X (¢;_, +;) represents the characteristic function of the interval (t;_1,¢;]. Thus

v, (0,7) = v} for 7 € (t;_1,t;], etc. We also have that fot"' GI(T)dr = tj —tj_q
for j=1,n.

Using the approximations (26)-(30) into the equations (24) and (25) we obtain,
forn=1,N,

tn tn—L/c
vg + cv;?/ 0" (r)dr — ¢"(t,, — L/c)fuﬁ - C’U;LL/ 0" (r)dr
0 0

n-1 M _ n—1 ta—Ljc
= 3" Wt — L/ + 3 wilety)u + ¢ 3 v /0 67 (1)dr
Jj=1 i=1 j=1

n—1 t M ct
n . 1 i n
—c E U;‘O/O 67 (1)dr + - E vo/o Yi(z)de = F (32)
j=1 i=1

and
tn tn—L/c
v£ - cv;bL / 0" (r)dr — ¢"(t,, — L/c)vg + cv;? / 0" (r)dr
0 0
n—1 M n—1 tn
= Z ¢ (tn — L/c)v] + Z Vi(L — ctp)ul + ¢ Z vl / 7 (1)dr
j=1 i=1 j=1 0
n—1 tn—L/c 1 M ] L
—c Z vé-o/ ¢’ (t)dr + - Z Uf)/ i(x)dx =: G. (33)
= 0 S L—ctp
Denoting

tn tn—L/c
A=c / 0" (r)dr, B=¢"(tn —Ljc), D=-c / on(rydr,  (34)
0 0

equations (32) and (33) can be rewritten as

02 + Av/? — BuE — DvF = F, (35)
vk — AvlE — B + Dv? = G. (36)

At each time t,, for n = 1, N, the system of equations (35) and (36) represents a
time marching BEM technique in which the values of F' and G are expressed in
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terms of the previous values of the solution at the times tq,...,t,_1. Note that
upon the imposition of the initial conditions (11) and (12) we know

uf) = v(x,0) = ugp(z;), vé = v(24,0) = vo(x;), i=1,M. (37)

The system of equations (35) and (36) contains 2 equations with 4 unknowns.
Two more equations are known from the boundary conditions (13) and (14),
namely

vg =v(0,t,) =po(tn) = p;, m=1N, (38)
/w,f +(1- u)v;lL =pv(L,tn) + (1 — e (Lytn) = pr(tn) =:p7, mn=1,N. (39)

The solution of the system of equations (35), (36), (38) and (39) can be ex-
pressed explicitly at each time step t, for n =1, N and is given by:
(a) For u =1, i.e. the Dirichlet problem (10)-(14) in which equation (14) is given
by

U(La t) =DL (t)a te [Oa OO), (40)
and equation (39) yields

the unspecified boundary values are the Neumann flux values. Introduction of
(38) and (41) into (35) and (36) yields the simplified system of two equations with
two unknowns given by

AV — D't = F —pp + Bp} =: F, (42)
Dl — Avll = G — pt + Bpy =: G. (43)

Application of Cramer’s rule immediately yields the solution

o DG - AF

. AG—DF
Un =Dz a2 -

v

(b) For 1 = 0, i.e. the mixed problem (10)-(14) in which equation (14) is given by

vw<L; t) =DPL, te [Oa OO) (45>
and equation (39) yields
vl =pt n=T1N, (46)

the unspecified boundary values are the Neumann data at x = 0 and the Dirichlet
data at @ = L. Introduction of (38) and (46) into (35) and (36) yields

AV — Bol = F —pl + Dp} =: F, (47)
Dvl® + ol =G+ Bpy + App = G (48)
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This yields the solution

o F+BG | AG-DF

n = AxDpB "~ A+ DB (49)

Alternatively, instead of employing a time-marching BEM it is also possible to

employ a global BEM by assembling (32) and (33) as a full system of 2N linear
equations with 4N unknown v?,vF, v/, v} for j =1, N, namely,

n tn ta—Ljc .
Z [cvg-o ; 0 (t)dr — cv;-L/O 07 ()dr — ¢/ (tn — L/c)v¥

=1

<

ct

) wl(x)dx] — vg, n=
0

1,N

; (50)

)

M 1
Z [¢¢(ctn)u6 + EvZ]

i=1

and

n tn ta—Ljc ‘
Z {cv;-L i & (t)dr — CU;'O/O 07 (7)dr + ¢/ (tn — L/c)v)

Jj=1

M 1.
=3 [wz = et + Lop
=1

L

zbi(z)dx} +ok n=1/N. (51)

L—ct,

The other 2N equations are given by (38) and (39). Introduction of (38) and (39)
into (50) and (51) finally results in a linear system of 2N algebraic equations with
2N unknowns which can be solved using a Gaussian elimination procedure.

Once all the boundary values been determined accurately, the interior solution
can be obtained explicitly using equation (21). This gives

n

2006, tn) = 3 |7t — (L = /e + 8t — 6/

j=1

0

n tn—(L—=§)/c X tn—§/c X M
+CZ l:U}L/ & (T)dT — U;»O/ 6 (T)dT:| + Z [1/)1'(5 — ctp)
j=1 0 i=1

) 1 M pétctn
puren i+ 13 0 [ e a=TF. 1. (2

i=1 —ctn

In (52), for the piecewise constant interpolation (31),
th—¢/c
/ i(r)dr = Htn—t;1 — £/e)(t; —t;1),
0

tn_(L_f)/C i
/0 0/ (r)dr = H(tn—t; 1 — (L—€)/c)(t; —t; 1).
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As experienced in [1], by comparing the BEM with the method of charac-
teristics one observes that by choosing At = T/N and Az = L/M such that
the Courant number cAt/Ax = ¢cTTM/(NL) = 1 then, the grid is set to fit the
characteristic net and the error involved is made arbitrarily small by reducing
interpolation between points.

The flux v,(0,t) obtained numerically using the BEM is then introduced into
(19) and the inverse problem (15)-(19) for the pair solution (w(z,t), f(z)) is solved
using the method described in the next section.

4 Method for solving the inverse problem (15)-(19)

The method employed for solving the inverse problem (15)-(19) is based on the
separation of variables which gives that an approximate solution to the problem
(15)-(19) is given by, [4],

K (z,t;) Z% — cos(cAgt)) sin(Apz), (z,t) € [0,L] x [0,00), (53)
k= k:

z) = \@Z bpsin(Agz), =z € (0,L), (54)

k=1

where K is a truncation number and

kx if p=1,
Ap = (55)
(G L p=0.

The coefficients b = (by) k=T are to be determined by imposing the additional
boundary condition (19). This results in

qo(t) = vz(0,8) = g(t) =

K
G050 = g 2 %(1 — cos(cAxt)), € [0,T]. (56)

In practice, the additional observation (7) comes from measurement which is
inherently contaminated with errors. We therefore model this by replacing the
exact data go(t) by the noisy data

Q(E)(tn) = QO(tn) +e n=1, N7 (57)

where ¢ are N random noisy variables generated (using the Fortran NAG rou-
tine GO5DDF) from a Gaussian normal distribution with mean zero and standard
deviation o given by

o = p% X mazepo, 1 |q0(t)] (58)

10
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where p% represents the percentage of noise. The noisy data (57) also induces
noise in g as given by

9 (tn) = q5(tn) — v(0,t,) = g(tn) +€, n=1N. (59)

Then we apply the condition (56) with g replaced by ¢¢ in a least-squares
penalised sense by minimizing the Tikhonov functional

K

N K 2
VOEDY {ﬂ > b—k(l — cos(CAptn)) — gﬁ(tn)} +AD b7, (60)
k

2
c A
k —

n=1 k=1

where A > 0 is a regularization parameter to be prescribed according to some
criterion, e.g. the L-curve criterion, [6].
Denoting

e € V2(1 — cos(cAptn
0= G D Que=PEEN) TN b =TR, (o)

we can recast (60) in a compact form as
JO) =l Qb —g° [I* +A [ b, (62)

which is also known as the zeroth-order Tikhonov regularization. Higher-order
regularization can also be employed by replacing the last term in (60) by the
first-order derivative

K
18 2= 5" (b — ber)?, (63)
k=2
or by the second-order derivative
K
18 1= 3 bk — b + be—2)?, (64)
k=3

etc. In general, N > K and the minimization of (62) then yields the zeroth-order
Tikhonov regularization solution

by =(QUQ+A)TIQ" g . (65)

Once b has been found, the spacewise dependent force function is obtained
using (54). Also, the displacement solution u(z,t) is obtained using (9) and (53).

5 Numerical Results and Discussion

In this section, we illustrate and discuss the numerical results obtained using the
combined BEM+Tikhonov regularization described in Sections 3 and 4.

1"
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For simplicity, we take ¢c = L =T = p = 1 and in the BEM we use constant
time and space interpolation functions. We consider an analytical solution given

2
u(z,t) = sin(ﬂx)+t+%, (1) € [0,1] x [0, 00), (66)

fx) = 1+a%sin(rz) = €]0,1]. (67)

This generates the input data (2)-(5) and (7) given by

uw(z,0) = ug(z) =sin(rz), w(x,0) =wvo(x) =1, z€]0,1], (68)
WO =) =+, W =) =+, teo) (69
ugp(0,8) = qo(t) =7, t€][0,1]. (70)

First we investigate the performance of the BEM described in Section 3 to
solve the direct well-posed problem (10)-(14) for the function v(z,t). Remark that
condition (22) is satisfied by the initial displacement ug(z) in (68) hence, there is
no need to employ the modified function (23). Also note that the direct problem
for v(x, t) satisfying equation (10) (with ¢ = 1) subject to the initial conditions (68)
and the Dirichlet boundary conditions (69) does not have a closed form analytical
solution available.

Figure 2 shows the numerical results for v,(0,t), as a function of ¢, obtained
using the BEM with various M = N € {20,40,80}. From this figure it can be
seen that a convergent numerical solution, independent of the mesh, is rapidly
obtained. The numerical solution for v,(0,t) obtained at the points (t,),_7x
is then input into equation (56) to determine the values for g(¢,) and its noisy
counterpart g¢(t,) given by (59) for n = 1, N.

12



S.0. Hussein and D. Lesnic / Electronic Journal of Boundary Elements, Vol. 12, No. 1, pp. 1-26 (2014)

—N=M==20

(0, 8)

_5 | 1 1 1 1 1 1 | 1 ]
0 01 0.2 0.3 0.4 0.5 0.a 07 0a 04 1

?

Figure 2: The numerical results for v, (0,t) obtained using the BEM with M =
N € {20, 40,80}

We turn now our attention to the pair solution (53) and (54) of the inverse
problem (15)-(19). Since this problem is ill-posed we expect that the matrix @ in
(61) having the entries

V2(1 - cos(i22))
km ’

an = n= 177N7 k= 1777 (71)
will be ill-conditioned. The condition number defined as the ratio between the
largest to the smallest singular values of the matrix @ is calculated in MATLAB
using the command cond(Q). Table 1 shows the condition number of the matrix
Q for various N € {20,40,80} and K € {5,10,20}. We remark that the condition
number is not affected by the increase in the number of measurements IV, but it
increases rapidly as the number K of basis functions increases. The ill-conditioning
nature of the matrix ) can also be revealed by plotting its normalised singular
values sv(k)/sv(1) for k =1, K, in Figure 3 for a fixed N = 80 and K = 20. These
singular values have been calculated in MATLAB using the command svd(Q).

13
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Table 1: Condition number of the matrix @ given by equation (71).

K N =20 N =40 N =380
5 82.62 82.25 82.28
10 371.6 367.0 365.7
20 | 142E4+3 | 1.56E+3 | 1.54E +3

10°

10 F

107k

su(k)/su(1)

107 F

10 a 2 4 6 g 10 12 14 16 18 20

Figure 3: Normalised singular values sv(k)/sv(1) for k = 1, K, for N = 80 and
K = 20.

Let us fix N = 80 and now proceed to solving the inverse problem (15)-(19)
which based on the method of Section 4 has been reduced to solving the linear,
but ill-conditioned system of equations

Qb = g“.

Using the Tikhonov regularization method one obtains a stable solution given
explicitly by equation (65) provided that the regularization parameter \ is suitably
chosen.

(72)

5.1 Exact Data

We first consider the case of exact data, i.e. p = 0 and hence e = 0 in (57) and
(59). Then g¢ = g and the system of equations (72) becomes

Qb=g. (73)

14
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We remark that although we have no random noise added to the data qg, we
still have some numerical noise in the data g in (56). This is given by the small
discrepancy between the unavailable exact solution v, (0,¢) of the direct problem
and its numerical BEM solution obtained with M = N = 80 plotted in Figure
2. However, the rapid convergent behaviour shown is Figure 2 indicates that this
numerical noise is small (at least in comparison with the large amount of random
noise € that we will be including in the data ¢ in Section 5.2).

Figure 4 shows the retrieved coefficient vector b = (bk)k:ﬁ for K = 20
obtained using no regularization, i.e. A = 0, in which case (65) produces the
least-squares solution

b: (QtrQ)—thrg (74)

of the system of equations (72).
Note that the analytical values for the sine Fourier series coefficients are given
by

1 1
b = \@/0 f(@)sin(krz)dz = \/5/0 (1 + w2 sin(mz)) sin(kmz)dx

which gives

S

2 ~ : _
T + ﬁ =~ 7.8791 lf k‘ = 1,
b, =40 if k = even, (75)
2y2 if k = odd > 3.

By inspecting Figure 4 it appears that the leading term b is the most significant
in the series expansions (53) and (54). These expansions give the solutions f(x)
and u(z,t) (via (9)) which are plotted in Figures 5 and 6, respectively. From these
figures it can be seen that accurate numerical solutions are obtained.
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by

Figure 4: The numerical solution (...) for (by),_7x for K = 20, N = 80,
obtained with no regularization, i.e. A = 0, for exact data, in comparison with the
exact solution (75) (—).

T

Figure 5: The exact solution (67) for f(z) in comparison with the numerical
solution (54) for various K € {5,10, 20}, no regularization, for exact data.
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01 02 03 04 05 06 07 08 08 01 02 03 04 05 068 07 08 09

01 02 03 04 05 06 07 08 08
xz

Figure 6: The numerical solution (— — —) for u(x,t) obtained with various K €
{5,10, 20}, no regularization, for exact data, in comparison with the exact solution

(66) (—)-

5.2 Noisy Data

In order to investigate the stability of the numerical solution we include some
(p% = 1%) noise into the input data (7), as given by equation (57). The numerical
solutions for f(z) and wu(z,t) obtained for various values of K € {5,10,20} and
no regularization are plotted in Figures 7 and 8, respectively. First, by inspecting
Figures 6 and 8 it can be observed that there is little difference between the results
for u(z,t) obtained with and without noise and that there is very good agreement
with the exact solution (66). It also means that the numerical solution for the
displacement u(x,t) is stable with respect to noise added in the input data (7).
In contrast, in Figure 7 the unregularized numerical solution for f(z) manifests
instabilities as K increases. For K (small) the numerically retrieved solution is
quite stable showing that taking a small number of basis functions in the series
expansion (54) has a regularization effect. However, as K increase to 10 or 20 it
can be clearly seen that oscillations start to appear.
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O 1 1 1 1 ]

a 0z 04 0B 0z 1
T

Figure 7: The exact solution (67) for f(x) in comparison with the numerical
solution (54) for various K € {5,10,20}, no regularization, for p% = 1% noisy
data.

Eventually, these oscillations will become highly unbounded, as K increases
even further. In order to deal with this instability we employ the Tikhonov
regularization which yields the solution (65). We fix K = 20 and we wish to
alleviate the instability of the numerical solution for f(x) shown by (—A—)
in Figure 7 obtained with no regularization, i.e. A = 0, for p% = 1% noisy
data. Including regularization we obtain the solution (65) whose accuracy er-
ror, as a function of A, is plotted in Figure 9. This error has been calculated as

N . .
||fnumer7ﬁcal - fexact” = \/anl(fnunmrical(tn) - fe:cact(tn))2- From Figure 9 it

can be seen that the minimum of the error occurs around A = 10~!. Clearly, this
argument cannot be used as a suitable choice for the regularization parameter A
in the absence of an analytical (exact) solution (67) being available. However, one
possible criterion for choosing A is given by the L-curve method, [6], which plots
the residual norm ||Qb, — ¢¢|| versus the solution norm ||b,|| for various values of
. This is shown in Figure 10 for various values of

Ae{1073,5x1072,1072,8x1072,6x1072,4x107%,2x1072,1071,0.2,0.3, ..., 1}.

The portion to the right of the curve corresponds to large values of A which make
the solution oversmooth, whilst the portion to the left of the curve corresponds
to small values of A which make the solution undersmooth. The compromise is
then achieved around the corner region of the L-curve where the aforementioned
portions meet. Figure 10 shows that this corner region includes the values around
A = 107! which was previously found to be optimal from Figure 9.
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Finally, Figure 11 shows the regularized numerical solution for f(z) obtained
with various values of the regularization parameter A € {1072,107*,10°} for p% =
1% noisy data. From this figure it can be seen that the value of the regularization
parameter A can also be chosen by trial and error. By plotting the numerical
solution for various values of A\ we can infer when the instability starts to kick off.
For example, in Figure 11, the value of A = 10° is too large and the solution is
oversmooth, whilst the value of A = 1072 is too small and the solution is unstable.
We could therefore inspect the value of A = 10~! and conclude that this is a
reasonable choice of the regularization parameter which balances the smoothness
with the instability of the solution.

01 0z 03 04 05 06 07 08 08 01 02 03 04 E'Lf 06 07 08 08

01 02 03 04 05 0B 07 08 08

Figure 8: The numerical solution (— — —) for u(x,t) obtained with various K €
{5,10,20}, no regularization, for p% = 1% noisy data, in comparison with the
exact solution (66) (—).
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Figure 9: The accuracy error || frumerical — fexact|], s a function of A, for K = 20
and p% = 1% noise.

8,
A=10"

[

Figure 10: The L-curve for the Tikhonov regularization (62), for K = 20 and
p% = 1% noise.
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Figure 11: The exact solution (67) for f(x) in comparison with the numerical
solution (54), for K = 20, p% = 1% noise, and regularization parameters \ €
{10-2,10-1,10°}.

6 Alternative Control

For completeness, we describe the previously remarked, after equation (19), alter-
native control namely, that we can replace equation (13) by

UI(O, t) = qO(t)v te [07 OO) (76>
and equation (19) by
w(0,t) = po(t) — v(0,t), ¢€][0,T]. (77)

Then we can solve the well-posed direct problem (10)-(12), (14) and (76) to obtain
first v(0,¢). For the same test example, as in the previous section, Figure 12
shows the numerical results for v(0,t) obtained using the BEM with M = N €
{20,40,80}. From this figure it can be seen that a convergent numerical solution,
independent of the mesh, is rapidly achieved. The value of v(0, ) is then introduced
into (77) to generate the Dirichlet data at 2 = 0 for the inverse problem given by
equation (15)-(18) and (77). We solve this inverse problem, as described in Section
4, with the obvious modifications to obtain the separation of variables solution

K
wg (z,t;b) = g Z f)\%(l — cos(cApt)) cos(Agx), (z,t) €[0,L] x [0,00), (78)
k=1
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K
fr(@) =V2) brcos(\ex), x € (0,L), (79)

k=1

where A, = (k — $)7/L for k =1, K. The coefficient b = (b)) -7 is determined
by imposing the additional condition (77),

K
g Z %(1 —cos(eAgt)), t€[0,T], (80)
k=1"k

po(t) —v(0,t) =: h(t) =
in the Tikhonov regularized sense (60), namely, as minimizing the functional

N K 2 K
J(b) = 1 [\/i Z i%(l — cos(eAgtn)) — hé(tn)] + )\kz_l b2 (81)

Denoting

V2(1 — cos(cAptn))

. n=LN, k=LK, (82
2X\2

B = (W ()t Qi =

we can recast (81) in the compact form (61).

The condition numbers of the matrix @, defined in equation (82), are given in
Table 2 for various N € {20,40,80} and K € {5,10,20}. From this table it can
be seen that ill-conditioning increases significantly, as K increases.

0ar

v(0, t)

_25 1 1 1 1 1 L 1 1 1 1
0 0.1 0z na 04 0.5 06 07 e 08 1

t

Figure 12: The numerical results for v(0,¢) obtained using the BEM with M =
N € {20,40,80}.
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Table 2: Condition number of the matrix @ given by equation (82).

K N =20 N =40 N =380

5 | 3.55E+3 | 3.62E+3 | 3.68E+3
10 | 6.81E+4 | 6.84E+4 | 6.96E 44
20 | 1.21E4+6 | 1.17TE+6 | 1.18E+6

6.1 Exact Data

In the case of exact data, as in Section 5.1, Figure 13 shows the retrieved co-
efficients (by),_77 for K = 20 obtained with no regularization, i.e. A = 0, in
comparison with the exact cosine Fourier series coefficients given by

by = \/i/olf(:c)cos ((k;— ;) mc) da

which, for f(z) given by (67), gives

2v2(27%+3) .
by, = (83)
_2V2(2r? (2k—1)+(=1)* (4k*—4k—3)) if

(8RB —12k2—2k+3) k>1.

Good agreement between the exact and numerical values can be observed. With
these value of b = (bi),_77, the solution (79) for the force function yields the
numerical results illustrated in Figure 14. From this figure it can be seen that
accurate numerical results are obtained.
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Figure 13: The numerical solution (...) for (bg),_t for K = 20, N = 80,
obtained with no regularization, i.e. A = 0, for exact data, in comparison with the
exact solution (83) (—).

Figure 14: The exact solution (67) for f(x) in comparison with the numerical
solution (79) for various K € {5,10, 20}, no regularization, for exact data.
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6.2 Noisy Data

In the case of noisy data, as in Section 5.2, Figure 15 shows the regularized numer-
ical solution for f(x) obtained with various A\ € {107%,1073,1072} for p% = 1%
noisy data added to po(t) as

po(tn) =po(tn) +€, mn=1,N, (84)

where € are N random noisy variables generated from a Gaussian normal distri-
bution with mean zero and standard deviation o given by

o = p% x maxepo, 1 |po(t)] . (85)

From this figure it can be seen that the numerical results obtained with A between
10~3 and 1072 are reasonably stable and accurate.

12r

Figure 15: The exact solution (67) for f(x) in comparison with the numerical
solution (79) for K = 20, p% = 1% noise, and regularization parameters A €
{107%,1073,1072}.

7 Conclusions

An inverse force problem for the one-dimensional wave equation has been investi-
gated. The unknown forcing term was assumed to depend on the space variable
only and the additional measurement which ensures a unique retrieval was the
flux at one end of the string. This inverse problem is uniquely solvable, but is still
ill-posed since small errors in the input flux cause large errors in the output force.
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The problem is split into a direct well-posed problem for the linear wave equa-
tion, which is solved numerically using the BEM, and an inverse ill-posed problem
whose unstable solution is expressed as a separation of variables truncated series.
In order to stabilise the solution, the Tikhonov regularization method has been
employed. The choice of the regularization parameter was based on the L-curve
criterion. Numerical results for a typical benchmark smooth test example show
that an accurate and stable solution has been obtained. Future work will consist
in investigating the inverse force problem in higher dimensions.
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