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Abstract

In this paper, problems involving infiltration from periodic identical trapezoidal
channels into homogeneous soils with root water uptake are considered. The gov-
erning equation of infiltration through soil is transformed to a modified Helmholtz
equation using Kirchoff transformation with dimensionless variables. A DRBEM
with a predictor-corrector scheme is employed to obtain numerical solutions to the
modified Helmholtz equation. The proposed method is used to solve infiltration
problems in three different types of soil. Results are shown to be physically mean-
ingful.

Keywords : Richard’s equation, Helmholtz equation, DRBEM, predictor-corrector,
infiltration, root water uptake.

1 Introduction

Many researchers have been studying the problem of water infiltration from irriga-
tion channels in recent years. Weachter and Mandal investigated time-independent
infiltration from a semicircular cylindrical trench [19]. Steady infiltration from ir-
rigation channels has been studied by Azis et al [3], and Clements and Lobo [8].
Problems involving steady infiltration with impermeable inclusion have been con-
sidered by Lobo et al [11], while Clements et al [7] examined infiltration problems
with impermeable layers. Lobo and Clements studied time-dependent infiltration
from an irrigation channel with as well as without inclusions [12]. The study of the
models of root water uptake has also been considered by researchers, such as Vrugt
et al [17], Vrugt et al [18], Li et al [10], and Skaggs et al [14]. However, in most of
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these studies involving infiltration from irrigation channels, water absorption by
plant roots was not taken into account.

In this paper, we investigate solutions to problems involving steady infiltration
with absorption by plant roots in three different types of homogeneous soil. This
study is a continuation of our previous study reported in [15]. For the convenience
of readers and to ensure completeness of this paper, some basic equations and
methods described in our previous study are briefly introduced.

A set of transformations is used to convert the governing equation to a modified
Helmholtz equation. To solve the equation numerically, a numerical scheme based
on a dual reciprocity boundary element method, or DRBEM, is constructed by
employing an integral formulation. Using the DRBEM and a predictor-corrector
scheme simultaneously, numerical solutions to the problems are obtained. The
method is then applied to examine water infiltration in three different types of
soil.

2 Problem Formulation

Using a Cartesian coordinate system OXY Z with OZ vertically positive down-
wards, we consider three types of homogeneous soil, pima clay loam (PCL), touchet
silt loam (TSL), and guelph loam (GL) in the region Z ≥ 0. Periodic identical
trapezoidal channels of 2L per unit length surface area are created on the surface of
the soil. Crops, with roots of depth Zm and width 2Xm, are planted between and
equidistant from two adjacent channels. The distance between two consecutive
rows of crops is 2(L+D). This description is illustrated in Figure 1.

It is assumed that the geometries of the channels and the root distribution do
not vary in theOY direction and are symmetrical about the planesX = ±k(L+D),
for k = 0, 1, 2, · · · . Water is supplied from the channels in uniform fluxes, v0.
However, on the soil surface outside the channels, the flux is zero. Given this
situation, we wish to determine suction potential and the water uptake from the
three different soil types stated above.

Because of the symmetry of the problem, it is sufficient to consider the semi
infinite region defined by 0 ≤ X ≤ L+D and Z ≥ 0. This region is denoted by R
with boundary C. The boundary along the surface of the channel is denoted by C1

and the surface of soil outside the channel by C2. The boundary along X = L+D
is denoted by C3, and C4 is for X = 0. The fluxes over C1 is v0, while over C2 is
0. There are no fluxes across C3 and C4 as the problem symmetrical about them.
The derivatives ∂Θ/∂X → 0 and ∂Θ/∂Z → 0 as X2 + Z2 → ∞.

3 Basic Equations

The governing equation of steady infiltration with root water uptake is given by

∂

∂X

(
K

∂ψ

∂X

)
+

∂

∂Z

(
K

∂ψ

∂Z

)
− ∂K

∂Z
= S(X,Z, ψ), (1)
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Figure 1: Geometry of periodic trapezoidal channels with roots zone

where K (LT−1) is the hydraulic conductivity, ψ (L) is the suction potential, and
S (T−1) is the root water uptake function.

The relation between K and ψ is defined as

K = Kse
αψ, α > 0, (2)

where α (L−1) is an empirical parameter and Ks is the saturated hydraulic con-
ductivity. The Matric flux potential (MFP), Θ, is obtained using the Kirchhoff
transformation

Θ =

∫ ψ

−∞
Kds. (3)

Using equations (2) and (3), the following equation is obtained

ψ =
1

α
ln

(
αΘ

Ks

)
, (4)

and equation (1) is transformed to

∂2Θ

∂X2
+

∂2Θ

∂Z2
− α

∂Θ

∂Z
= S

(
X,Z,

1

α
ln

[
αΘ

Ks

])
. (5)

The flux normal to the surface with outward pointing normal n = (n1, n2) is
given by

F = − ∂Θ

∂X
n1 +

(
αΘ− ∂Θ

∂Z

)
n2. (6)
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The root water uptake function is as that in [15], which takes the form

S(X,Z, ψ) = γ(ψ)
Ltβ(X,Z)Tpot∫ Zm

0

∫ L+D

L+D−Xm
β(X,Z)dXdZ

, (7)

where γ is the root-water stress response function, Lt is the width of soil surface
associated with the transpiration process, Tpot is the potential transpiration, and
β(X,Z) is the two-dimensional spatial root distribution, which takes the form

β(X,Z) =

(
1− L+D −X

Xm

)(
1− Z

Zm

)

×e−(pZ/Zm|Z∗−Z|+pX/Xm|X∗−(L+D−X)|),

L+D −Xm ≤ X ≤ L+D, 0 ≤ Z ≤ Zm, (8)

where pZ , pX , X∗, and Z∗ are empirical parameters.
Using the dimensionless variables

x =
α

2
X, z =

α

2
Z, Φ =

πΘ

v0L
, f =

2π

v0αL
F, ) (9)

and the transformation

Φ = ezφ, (10)

equation (5) may be transformed to

∂2φ

∂x2
+

∂2φ

∂z2
= φ+ γ∗(φ)s∗(x, z)e−z, (11)

where

s∗(x, z) =
2π

αL

ltβ
∗(x, z)∫ zm

0

∫ b

b−xm
β∗(x, z)dxdz

Tpot

v0
, (12)

and

γ ∗ (φ) = γ

(
1

α
ln

(
αv0Lφe

z

πKs

))
. (13)

Here

lt =
α

2
Lt, xm =

α

2
Xm, zm =

α

2
Zm, x∗ =

α

2
X∗, z∗ =

α

2
Z∗

px =
α

2
pX , pz =

α

2
pZ , a =

α

2
L b =

α

2
(L+D), (14)

and

β∗(x, z) =

[
1− b− x

xm

] [
1− z

zm

]

×e−(pz/zm|2z∗/α−2z/α|+px/xm|2x∗/α−2/α (b−x)|),

b− xm ≤ x ≤ b, 0 ≤ z ≤ zm. (15)
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Equations (6), (9), and (10) yield

f = −ez
[
∂φ

∂x
n1 −

(
φ− ∂φ

∂z

)
n2

]
. (16)

From equation (16), the normal derivative of φ may take the form

∂φ

∂n
= φn2 − e−zf. (17)

Boundary conditions in term of φ are summarized as follows.

∂φ

∂n
=

2π

αL
e−z + n2φ, on the surface of the channels, (18)

∂φ

∂n
= −φ, on the surface of soil outside the channels, (19)

∂φ

∂n
= 0, x = 0 and z ≥ 0, (20)

∂φ

∂n
= 0, x = b and z ≥ 0, (21)

and

∂φ

∂n
= −φ, as z → ∞. (22)

An integral equation to solve equation (11), as discussed by Ang [2], is

λ(ξ, η)φ(ξ, η) =

∫ ∫

R

ϕ(x, z; ξ, η)[φ(x, z) + γ∗(φ)s∗(x, z)e−z]dxdz

+

∫

C

[
φ(x, z)

∂

∂n
(ϕ(x, z; ξ, η))

− ϕ(x, z; ξη)
∂

∂n
(φ(x, z))

]
ds(x, z), (23)

where

λ(ξ, η) =

{
1
2 , (ξ, η) lies on a smooth part of C
1, (ξ, η) ∈ R

, (24)

and

ϕ(x, z; ξ, η) =
1

4π
ln[(x− ξ)2 + (z − η)2] (25)

is the fundamental solution of the Laplace’s equation.
Integral equation (23) may be solved numerically using the dual reciprocity

boundary element procedure with predictor corrector scheme as discussed in [15].
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4 Results and Discussion

The method described in the preceding section is tested on problems involving
infiltration from periodic identical trapezoidal channels into three different types
of homogeneous soil with root water uptake process. We set L = D = 50 cm,
and the width and the depth of the channels are 4L/π and 3L/2π respectively.
The potential transpiration rate, Tpot, is 4 cm/d, which was also used by Li et
al [10], and Šimunek and Hopmans [13] in their studies. The homogeneous soils
considered in the present study are pima clay loam, touchet silt loam, and guelph
loam. The values of experimental parameters α and Ks of the soils are as reported
by Amozegar-Fard et al [1] and Bresler [6], and are summarized in Table 1.

Table 1: The values of α and Ks of three different homogeneous soils

Soil type α Ks

Pima clay loam 0.014 cm−1 9.9 cm/d
Touchet silt loam 0.0156 cm−1 41.99 cm/d
Guelph loam 0.034 cm−1 31.71 cm/d

We assume that root zones have the same width and depth of 100 cm. We
further assume that there are no fluxes across soil surface outside the channels,
which means the soil surface has the lowest amount of water. Correspondingly,
it is only reasonable to consider a root distribution which has low density at the
surface of soil. As the roots go deeper into the soil, their density increases until it
reaches a limit at a certain level of soil depth. From this level to the end point of
the root zone in OZ direction, the root density decreases to zero. We also assume
that the root distribution in the direction opposite to OX has the same pattern,
which is similar to that assumed by Vrugt et al.

Typical parameter values for the root distribution described above are X∗ = 25
cm, PX = 2.00, Z∗ = 20 cm, and PZ = 5.00. The values of PX , Z∗, and PZ chosen
are as reported by Vrugt et al [17]. The value of X∗ is chosen half of X∗ in the
same report as the width of the root zone considered in this study is half of that
in the report. Using this set of values, the densest part of the root distribution
along Z-axis is at Z = 20 cm, and along X-axis is at X = 75 cm.

The root-water stress response function γ used here is identical to that reported
by Utset et al [16], which can be seen graphically in Figure 2. The value of h3 for
Tpot = 0.4 cm/d is interpolated from h3,a and h3,b, and we have h3 = −470.

The DRBEM with the predictor-corrector scheme is employed to obtain nu-
merical solutions to equation (11). Using the numerical solutions and equations
(4), (9), and (10), numerical values of suction potential, ψ, are obtained. Substi-
tuting ψ to equation (7) yield values of root uptake function, S. To employ the
DRBEM, the domain must be bounded by a simple closed curve. The domain is
set to be between z = 0 and z = 4, sufficient depth for boundary conditions to
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Figure 2: Graph of root-water stress response function reported by Utset et al.

be applied without significant impact to values of Φ in the domain. The number
of line segments on the boundary is 202, and interior points chosen as collocation
points are 619 points. These numbers of line segments and interior points are cho-
sen in such a way, such that an optimum computational time and the convergence
of the values of Φ are achieved after several computational experiments. Some of
the results are presented graphically in Figures 3 to 7.

The values of ψ and S along Z-axis at X = 60 cm are shown in Figures 3(a)
and 4(a) respectively. The result indicate that at X = 60 cm, ψ is an increasing
function, which means the water content increases with soil depth. This is due
to the condition specifying that there is no water flux on the soil surface, that is,
the soil surface has the least water content. It can be seen that at any value of
Z, the value of ψ in guelph loam is the highest among those in the other types
of soil, and ψ in pima clay loam is the lowest, indicating that coarser soils yield
higher value of ψ. Since the values of ψ are between −100 and −30, from Figure
2 higher ψ implies smaller value of response function, and hence smaller values of
S as shown in Figure 4(a). This indicates that the amount of water absorbed by
the roots from a finer soil is higher than those from coarser soils.

The values of S increases as Z increases, and reaches a peak value at Z = 20
cm. For Z ≥ 20 cm, S is decreasing and S = 0 at Z = 100 cm. These results are
expected as from Z = 0 to Z = 20 cm the root distribution increases, and from
Z = 20 cm to Z = 100 cm the distribution decreases and no root at Z ≥ 100 cm.

Figures 3(b) and 4(b) show the values of ψ and S at X = 75 cm respectively.
As before, a coarser soil type yields higher value of ψ, but smaller value of S. The
density of root distribution along OX-axis reaches a maximum at X = 75 cm, and
from equation (8) the density is about 5 times at X = 60 cm. It can be seen that
the uptake at X = 70 cm is much higher than that at X = 60 cm.

Figure 3(c) shows the values of ψ and Figure 4(c) shows the values of S at
X = 90 cm. The density of root distribution at X = 90 cm is about 4/5 of that
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Figure 3: Suction potential in three
different homogeneous soils, pima clay
loam (PCL), touchet silt loam (TSL),
and guelph loam (GL), at x = 60 cm,
75 cm, and 90 cm
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different homogeneous soils, pima clay
loam (PCL), touchet silt loam (TSL),
and guelph loam (GL), at x = 60 cm,
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at X = 75 cm. The value of ψ at X = 90 cm is smaller than that at X = 75 cm,
and this implies that values of response function at X = 90 are higher than those
at X = 75 cm. From these, the values of S at X = 90 cm is almost the same as
those at X = 75 cm.

Figures 5 to 7 show the distribution of root water uptake function values, S,
in the root zone. Specifically, Figure 5 shows the distribution of the values of S
in PCL. The distribution of the values of S in TSL and GL are shown in Figures
6 and 7 respectively. It can be seen that maximum uptake occurs at point (75
cm, 20 cm). This is expected, as the values of X∗ and Z∗ are 25 cm and 20 cm.
It can also be seen that finer soils yield higher value of S than coarser soils over
the root zone. These results indicate that the highest amount of water absorbed
by the plant roots at the depth of 20 cm and 25 cm away from the plant in the
X-direction, and the total amount of water absorbed from finer soil types is higher
than that from coarser soils.

The amount of water absorbed by plant roots may be calculated using the
formula

∫ 100

0

∫ 100

50

S(X,Z, ψ) dXdZ. (26)

Since S is a function of ψ, and ψ is obtained numerically using the numerical
method described in the preceding section, the integral in (26) cannot be evaluated
analytically. Thus, a numerical scheme is used to estimate this integral.

To compute the integral numerically, the root zone is divided into 100 × 100
rectangular region. Let Aij be the region at j-th row and i-th column, and ∆xi

and ∆zj be the breadth and the length of region Aij .
Let Sij be the value of the root water uptake function at one corner of Aij .

Hence, integral (26) may be approximated using

100∑

j=1

100∑

i=1

Sij∆xi∆zj . (27)

Using formula (27), numerical values of the total amount of water absorbed
over from PCL, TSL and GL are 12.07 cm2/d, 10.79 cm2/d and 6.52 cm2/d. These
numerical values indicate that crops absorb more water from finer soils than coarser
soils.
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Figure 5: Surface plot of root uptake function over root zone for PCL
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Figure 6: Surface plot of root uptake function over root zone for TSL
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Figure 7: Surface plot of root uptake function over root zone for GL
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5 Concluding Remarks

Problems involving steady infiltration from periodic trapezoidal channels with
root-water uptake in three different types of homogeneous soil have been solved
numerically. A DRBEM with a predictor-corrector scheme is employed to solve
the problems. To predict the values of water stress response function, solutions
for corresponding problems without root water uptake are needed, and then em-
ploying the predictor-corrector scheme together with the DRBEM the required
values of the function is obtained. Using these values, numerical solutions of the
dimensionless MFP are obtained. Using the dimensionless MFP and empirical
parameters, suction potential can be calculated. Furthermore, water uptake can
be obtained.

In this study, the results indicate that coarser soil types generally provide
higher suction potential than finer soil. In contrast, coarser soil types results in
lower uptake of moisture than finer soil type.
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