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Abstract
Assuming linear displacements and constant strains and stresses at infinity, we re-
formulate the equations of the direct boundary element method for plane problems
of elasticity. We consider a body made of orthotropic material. The reformulated
equations make it possible to attack plane problems on exterior regions without
replacing the region by a bounded one.

1 Introduction
As is well known a large literature studies plane problems for orthotropic bodies,
including for instance [1, 2, 3], as well as the books [4, 5] and the references
therein. However, as explained by Schiavone [6], the standard formulation for
exterior regions has the disadvantage that it is impossible to prescribe a constant
stress state at infinity.

The reason is that an assumption about the far field pattern of the displace-
ments is needed in order to establish an appropriate Betti’s formula and to prove
uniqueness and existence for the exterior Dirchlet and Neuman problems. Unfor-
tunately, this assumption excludes those problems from the theory for which the
displacements are linear while the strains and stresses are constant at infinity.

To make progress on plane problems with such displacements, we note that
if the direct formulation reproduces this displacement field, then the resulting
strain and stress conditions must also be constant at infinity. Consequently, plane
problems for the exterior regions can be attacked without replacing the region
by a bounded one. The work in [7] and [8] presents such direct formulations
by assuming constant strains and stresses at infinity for an isotropic body. For
exterior regions [7] reformulates the classical approach to plane problems. For the
same class of problems but in a dual formulation [8] sets up the equations of the
direct method in terms of stress functions of order one.

The present paper is an attempt to clarify how the formulation changes if we
apply the ideas presented in paper [7] to orthotropic bodies.

2 Basic Equations in Generalized Plane Strain
Throughout this paper x1 and x2 are rectangular Cartesian coordinates, referred
to an origin O. Greek subscripts are assumed to have the range (1,2), summation
over repeated subscripts is implied. The doubly connected exterior region under
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consideration is denoted by Ae and is bounded by the contour Lo. We stipulate
that the contour admits a nonsingular parametrization in terms of its arc length s.
The outer normal is denoted by nπ. In accordance with the notations introduced,
δκλ is the Kronecker symbol, ∂α stands for the derivatives taken with respect to
xα and ε3κλ is the permutation symbol. Assuming plane problems let uκ, eκλ and
tκλ be the displacement field and the in plane components of strain and stress,
respectively. For orthotropic bodies the material constants are denoted by s11,
s12 = s21, s22 and s66.

For homogenous and orthotropic material the plane problem of classical elas-
ticity is governed by the kinematic equations

eρλ =
1
2
(∂ρuλ + ∂λuρ), (1)

Hook’s law

t11 = c11e11 + c12e22 ,

t22 = c12e11 + c22e22 ,

t12 = t21 = 2c66e12 ,

(2)

where

c11 =
s22

d
, c12 = c21 = −s12

d
, c22 =

s11

d
, c66 =

1
s66

, d = s11s22− s2
12 ; (3)

and the equilibrium equations

tρλ∂λ + bρ = 0 (4)

which should be complemented with appropriate boundary conditions not detailed
here since they play no role in the present investigations. The basic equation for
uλ takes the form

Dρλuλ + bρ = 0 , (5a)

where the differential operator Dρλ has the form

[Dρλ] =
[

c11∂
2
1+c66∂

2
2 (c12 + c66) ∂1∂2

(c21 + c66) ∂2∂1 c22∂
2
2+c66∂

2
1

]
. (5b)

Let Q(ξ1, ξ2) and M (x1, x2) be two points in the plane (the source point and the
field point). We shall assume temporarily that the point Q is fixed. The distance
between Q and M is R, the position vector of M relative to Q is rκ. The small
circle as a subscript (for instance M◦ or Q◦) indicates that the corresponding
points, i.e., Q or M are taken on the contour.

It is obvious that

rα(M,Q) = xα(M)− ξα(Q) = xα − ξα . (6)
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Let us introduce the following notations

λ1 + λ2 = (2s12 + s66) /s22 , (7)
λ1λ2 = s11/s22 , (8)

Aα = s12 − λαs22 , (9)

ρ2
α = λαr2

1 + r2
2 , (10)

D =
1

2π (λ1 − λ2) s22
. (11)

For our later considerations we note that equations (7) and (8) imply

λ1,2 =
2s21 + s66

2s22
±

√
(
2s21 + s66

2s22
)2 − s11

s22
. (12)

The well known singular fundamental solutions for the basic equation (5a) [1, 3]
are given by the formulas

U11(M, Q) = D
(√

λ1A
2
2 ln ρ1 −

√
λ2A

2
1 ln ρ2

)
,

U12(M, Q) = DA1A2 arctan

(√
λ1 −

√
λ2

)
r1r2√

λ1

√
λ2r2

1 + r2
2

,

U21(M, Q) = U12(M◦, Q) ,

U22(M, Q) = −D

(
A2

1 ln ρ1√
λ1

− A2
2 ln ρ2√

λ2

)
(13)

and

T11(M, Q) = D

[√
λ2A1

ρ2
2

−
√

λ1A2

ρ2
1

]
(r1n1 + r2n2) ,

T12(M, Q) = D

{(√
λ1A1

ρ2
1

−
√

λ2A2

ρ2
2

)
r1n2 −

(
1√
λ1

A1

ρ2
1

− 1√
λ2

A2

ρ2
2

)
r2n1

}
,

T21(M, Q) = D

{(
λ1

√
λ1A2

ρ2
1

− λ2

√
λ2A1

ρ2
2

)
r1n2 −

(√
λ1A2

ρ2
1

−
√

λ2A1

ρ2
2

)
r2n1

}
,

T22(M, Q) = D

[√
λ1A1

ρ2
1

−
√

λ2A2

ρ2
2

]
(r1n1 + r2n2) ,

(14)

where

uλ(M) = Uλκ(M, Q)eκ(Q) and tλ(M) = Tλκ(M, Q)eκ(Q)

are the displacement vector and stress vector on a line element with a normal
nλ = nλ(M) to it at the point M due to the force eκ = eκ(Q) at Q.
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3 Basic formulas for exterior regions
Figure 1 depicts a triple connected region A′e bounded by the contours Lo, Lε

and the circle LR with radius eR and center at O. Here Lε is the contour of the
neighborhood Aε of Q with radius Rε while eR is sufficiently large so that the
region bounded by LR covers both L0, and Lε. If eR → ∞ and Rε → 0 then
clearly A′e → Ae.

Let uκ(M) and gκ(M) be sufficiently smooth – continuously differentiable at
least twice – but otherwise arbitrary displacement fields on Ae. The stresses
obtained from these displacement fields are denoted by tλκ [uρ(M)] and tλκ [gρ(M)]
respectively.

A

eR
ne

Ae

O x1
x2

Q

LR
’

R

L

L

o

ds

ds

ds

Figure 1:
Equation

∫

A′e

[
uλ(M)

(
µ

M

Dλσgσ(M)
)
− gλ(M)

(
µ

M

Dλσuσ(M)
)]

dAM =

=
∮

Lo

[uλ(M◦)tλκ [gρ(M◦)] nκ(M◦)− gλ(M◦)tλκ [uρ(M◦)] nκ(M◦)] dsM◦

+
∮

Lε

[uλ(M◦)tλκ [gρ(M◦)] nκ(M◦)− gλ(M◦)tλκ [uρ(M◦)] nκ(M◦)] dsM◦

+
∮

LR

[uλ(M◦)tλκ [gρ(M◦)] nκ(M◦)− gλ(M◦)tλκ [uρ(M◦)] nκ(M◦)] dsM◦ , (15)
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in which M over a letter denotes derivatives taken with respect to the point coor-
dinates M and nκ(M◦) is the outward normal, is the primal Somigliana identity
applied to the triple connected region A′e.

Let gλ(Q) = Uλκ(M,Q)eκ(Q), which is a non singular elastic state of the plane
in A′e. We regard uλ(M) as a different elastic state in the region Ae. Further we
assume that uλ(M) has the far field pattern (asymptotic behavior)

ũκ(M) = cκ + ε3ρκxρω + eκβ(∞)xβ (16)

as xβ or equivalently M tends to infinity. Here cκ is a translation, ω is a rotation in
finite, cκ + ε3ρκxρω is the corresponding rigid body motion, eκβ(∞) is a constant
strain tensor at infinity and eκβ(∞)xβ is the corresponding displacement field.

The stresses induced by the strains eκβ(∞) can be obtained by the Hooke law:

t11(∞) = c11e11(∞) + c12e22(∞) ,

t22(∞) = c12e11(∞) + c22e22(∞) ,

t12(∞) = t21(∞) = 2c66e12(∞) ,

(17)

Substituting the above quantities into the Somigliana identity, we obtain
∫

A′e

[
uλ(M)

(
µ

M

DλσUσκ(M, Q)
)
−

(
µ

M

Dλσuσ(M)
)

Uλκ(M,Q)
]

dAM eκ(Q) =

=
∮

Lo

[uλ(M◦)Tλκ(M◦, Q)− tλ(M◦)Uλκ(M◦, Q)] dsM◦ eκ(Q)+

+
∮

Lε

[uλ(M◦)Tλκ(M◦, Q)− tλ(M◦)Uλκ(M◦, Q)] dsM◦ eκ(Q)

+
∮

LR

[uλ(M◦)Tλκ(M◦, Q)− tλ(M◦)Uλκ(M◦, Q)] dsM◦ eκ(Q) (18)

since tλκ [uρ(M◦)] nκ(M◦) = tλ(M◦) is the stress on the contour and obviously
tλκ [gρ(M◦)] nκ(M◦) = Tλκ(M◦, Q)eκ(Q).

In the sequel we shall assume that there are no body forces. This assumption
has no effect on the result we will obtain.

It is clear that one can omit eκ(Q). Regarding the equation obtained by omit-
ting eκ(Q), our goal is to compute its limit as Rε −→ 0 and eR −→∞. As is well
known, the left hand side vanishes under the conditions detailed above(see [4] ),
and hence∮

Lo

· · ·+ lim
Rε−→0

∮

Lε

· · · = uκ(Q)+
∮

Lo

[uλ(
o

M)Tλκ(M◦, Q)−tλ(M◦)Uλκ(M◦, Q)] dsM◦ .

Consequently

uκ(Q) = lim
eR−→∞

∮

LR

[tλ(M◦)Uλκ(M◦, Q)− uλ(M◦)Tλκ(M◦, Q)] dsM◦+

+
∮

Lo

[tλ(M◦)Uλκ(M◦, Q)− uλ(M◦)Tλκ(M◦, Q)] dsM◦ . (19)
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In order to establish the first Somigliana formula for the exterior region, we need
to find the limit of the first integral on the right hand side.

4 Somigliana formulas modified for exterior regions
Our goal in this section is to prove that

Iκ = lim
eR−→∞

∮

LR

[tλ(M◦)Uλκ(M◦, Q)− uλ(M◦)Tλκ(M◦, Q)] dsM◦ =

= cκ + ε3ρκξρω + eκβ(∞)ξβ = ũκ(Q) . (20)

The proof is based on the first Somigliana formula for inner regions and requires
simple tools only1.

Consider the simple connected region AR bounded by the circle LR with radius
eR and center at O. Assume that Q is in the interior of the region. The displace-
ment field ũ(M) is an elastic state of AR with no body forces. The corresponding
strain and stress tensors are denoted by ẽκλ(M) and t̃κλ(M), respectively. The
stress vector on the boundary is t̃κ = t̃κλ(Mo)nκ(Mo). Since ũ(M) is an elastic
state of the orthotropic inner region AR, the first Somigliana formula implies

ũκ(Q) =
∮

LR

[
t̃λ(M◦)Uλκ(M◦, Q)− ũλ(M◦)Tλκ(M◦, Q)

]
dsM◦ . (21)

Now consider the displacement field

ũλ(M) = cκ + ε3ρκxρω + eκβ(∞)xβ (22)

which describes the asymptotic behavior of uλ(M) in the exterior region Ae. It
can be checked that this displacement field is an elastic state of the entire plane,
including the region AR, for which the stress tensor is constant, i.e., t̃κλ(M) =
t̃κλ(∞). Given an elastic state of the plane, combining equations (21) and (22)
yields

∮

LR

[
t̃λ(M◦)Uλκ(M◦, Q)− ũλ(M◦)Tλκ(M◦, Q)

]
dsM◦ =

= ũλ(Q) = cκ + ε3ρκξρω + eκβ(∞)ξβ . (23)

Combining this with the limits

lim
eR−→∞

uλ(M) = ũλ and lim
eR−→∞

tλ(M) = t̃λ , (24)

1We would like to thank one of the referees for suggesting this simple derivation which replaces
our more complicated argument.
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and equation (23), we find that the limit of the integral in question in equation
(20) is

lim
eR−→∞

∮

LR

[tλ(M◦)Uλκ(M◦, Q)− uλ(M◦)Tλκ(M◦, Q)] dsM◦ =

= ũκ(Q) = cκ + ε3ρκξρω + eκβ(∞)ξβ . (25)

Consequently, the first and modified Somigliana formulas immediately follow
from equations (19) and (20):

uκ(Q) = ũκ(Q) +
∮

Lo

[tλ(M◦)Uλκ(M◦, Q)− uλ(M◦)Tλκ(M◦, Q)] dsM◦

Q ∈ Ae (26)

If Q = Q◦ is on Lo, our previous logic about the integral taken on LR is unaffected.
Consequently

Cκρuρ(Q◦) = ũκ(Q◦)+

+
∮

Lo

[tλ(M◦)Uλκ(M◦, Q◦)− uλ(M◦)Tλκ(M◦, Q◦)] dsM◦ Q = Q◦ ∈ Lo (27)

where Cκρ = δκρ/2 if the contour is smooth at Q◦. This is the integral equation of
the direct method, or the second Somigliana formula for exterior regions.

If Q is inside the contour Lo, i.e., in region Ai, then it is easy to show that

0 = eκβ(∞)ξβ(Q) +
∮

Lo

[tλ(M◦)Uλκ(M◦, Q)− uλ(M◦)Tλκ(M◦, Q)] dsM◦

Q = Q◦ ∈ Ai (28)

which is the third Somigliana formula for exterior regions.
Using the formulae set up for the strains in Appendix A and the Hooke law

(17) we can calculate the stresses:

tαβ(Q) = tαβ(∞) +
∮

Lo

tλ(M◦)D̂λαβ(M◦, Q) dsM◦−

−
∮

Lo

uλ(M◦)Sλαβ(M◦, Q) dsM◦ Q ∈ Ae (29)

where
D̂λ11 = c11Dλ11 + c12Dλ22 ,

D̂λ11 = c12Dλ11 + c22Dλ22 ,

D̂λ12 = 2c66Dλ12 = D̂λ21 ,

Ŝλ11 = c11Sλ11 + c12Sλ22 ,

Ŝλ11 = c12Sλ11 + c22Sλ22 ,

Ŝλ12 = 2c66Sλ12 = Ŝλ21 .

(30)
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5 Behavior at infinity
Our goal in this section is to compute the limit of representation (26) as Q →∞.
This will lead to a characterization of the asymptotic behavior of uκ(Q). If this
behavior is the same what we have assumed, i.e., if the limit coincides with (16),
then we confirm that the results of the previous section are correct. It is clear
from representation (26) that it is sufficient to show that the following relations
hold

lim
Q(ξ1,ξ2)−→∞

∮

Lo

tλ(M◦)Uλκ(M◦, Q)dsM◦ = 0 ,

lim
Q(ξ1,ξ2)−→∞

∮

Lo

uλ(M◦)Tλκ(M◦, Q)dsM◦ = 0 . (31)

In order to find the limit of the above integrals we have to set up asymptotic
relations for the fundamental solutions Uλκ(M◦, Q) and Tλκ(M◦, Q) if Q −→∞.

O x1
x2 Q

Lo

ds

Mo
rα(Q,Mo)

rα(O,Q) = R

nα
nα

Figure 2:

Using the notations introduced in Figure 2. as well as equations (6) and (10) we
have

rα(
o

M,Q) = xα(
o

M)− ξα(Q) = xα − ξα = −R̂

(
n̂α − xα

R̂

)
≈ −R̂ n̂α |n̂α| = 1 ,

(32a)

ρα =
√

λαr2
1 + r2

2 ≈ R̂
√

λαn̂2
1 + n̂2

2 , (32b)

ln ρα ≈ ln R̂ +
1
2

ln
(
λαn̂2

1 + n̂2
2

)
. (32c)
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Substituting equations (32a,b,c) into (13) then performing some manipulations,
we obtain the following asymptotic relations for the fundamental solution of order
one:

U11(M◦, Q) ≈ D
[√

λ1A
2
2 −

√
λ2A

2
1

]
ln R̂ , (33a)

U12(M◦, Q) = U21(M◦, Q) ≈ DA1A2 arctan

(√
λ1 −

√
λ2

)
n̂1n̂2√

λ1

√
λ2n̂2

1 + n̂2
2

, (33b)

U22(M◦, Q) ≈ −D

[
A2

1√
λ1

− A2
2√
λ2

]
ln R̂ . (33c)

It is obvious that asymptotically Uλκ(M◦, Q) ≈ Uλκ(Q), i.e., the kernel in integral
(31)1 is independent of M◦.

Consequently

lim
Q(ξ1,ξ2)−→∞

∮

Lo

tλ(M◦)Uλκ(M◦, Q)dsM◦ =

= lim
Q(ξ1,ξ2)−→∞

Uλκ(Q)
∮

Lo

tλ(M◦) dsM◦

︸ ︷︷ ︸
resultant

= 0 . (34)

By repeating the line of thought leading to the asymptotic relations (33a,b,c),
for the fundamental solutions of order two we obtain

T11(M◦, Q) ≈ −D

R̂

( √
λ2A1

λ2n̂2
1 + n̂2

2

−
√

λ1A2

λ1n̂2
1 + n̂2

2

)
=

T̃11(Q)
R̂

, (35a)

T12(M◦, Q) ≈ −D

R̂

[
1− λ2√

λ2

A2

λ2n̂2
1 + n̂2

2

− 1− λ1√
λ1

A1

λ1n̂2
1 + n̂2

2

]
n̂1n̂2 =

T̃12(Q)
R̂

,

(35b)

T21(M◦, Q) ≈ −D

R̂

[√
λ1 (λ1 − 1)A2

λ1n̂2
1 + n̂2

2

−
√

λ2 (λ2 − 1)A1

λ2n̂2
1 + n̂2

2

]
n̂1n̂2 =

T̃21(Q)
R̂

, (35c)

T22(M◦, Q) ≈ −D

R̂

( √
λ2A1

λ1n̂2
1 + n̂2

2

−
√

λ1A2

λ2n̂2
1 + n̂2

2

)
=

T̃22(Q)
R̂

, (35d)

where T̃λκ = T̃λκ(Q) is defined by the above equations. Since for large R̂ the
kernel Tλκ(M◦, Q) is independent of M◦ and tends to zero, it follows that

lim
Q(ξ1,ξ2)−→∞

∮

Lo

uλ(M◦)Tλκ(M◦, Q)dsM◦ =

= lim
Q(ξ1,ξ2)−→∞

T̃λκ(Q)
R̂

∮

Lo

uλ(M◦) dsM◦ = 0 . (36)

This verifies that the asymptotic behavior of the displacement representation (26)
is as expected.
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6 Examples
In this section we solve two external boundary value problems. First we consider
the plane with a circular hole (Figure 3.b.); second the plane with a rigid inclusion
(Figure 3.c.). The material is birch for which s11 = 8.497 × 10−5, s12 = s21 =
−6.11 × 10−2, s22 = 1.6999 × 10−4 and s66 = 1.456 × 10−3. We assume that
τ12(∞) = σ22(∞) = 0 and σ11(∞) = p = constant. For completeness Figure 3.a.
shows the region to use if we solve the integral equation of the direct method in
its traditional form, i.e., if the exterior region is replaced by a bounded one.y

xOrop=σ11( )oo
A
D

e(a)
p=σ11( )ooro

(b)
p=σ11( )ooy

xOrop=σ11( )oo
A
D

e
p=σ11( )oo

Rigid incluson (c)
hole

Figure 3:

Lekhtniski’s book [9] contains closed form solutions for the stresses on the bound-
ary, as well as numerical values which can be found in Table 17. on page 197.
In this paper we show the results as computed by solving integral equation (27)
(typeset in red) and the results taken from [9] – see Tables 1. and 2. We used a
polar coordinate system, and the tables contain the quotients σθ/p for the plane
with circular hole and σr/p τrθ/p, σθ/p for the plane with the circular inclusion.
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Circular hole
Polar angle σθ/p [9], p.197

0◦ −0.7071 −0.707
15◦ −0.3399 −0.340
30◦ 0.0692 0.069
45◦ 0.4040 0.404
60◦ 0.9644 0.966
75◦ 2.5771 2.577
90◦ 5.4514 5.453

Table 1: Results for the circular hole

Rigid kernel
Polar angle σr/p [9], p.197 τrθ/p [9], p.197 σθ/p [9], p.197

0◦ 1.2363 1.237 0.0000 0.000 0.0445 0.044
15◦ 1.1562 1.156 −0.2994 −0.299 0.0934 0.093
30◦ 0.9370 0.937 −0.5185 −0.519 0.2697 0.270
45◦ 0.6378 0.698 −0.5987 −0.599 0.5154 0.516
60◦ 0.3383 0.388 −0.5185 −0.519 0.6989 0.699
75◦ 0.1192 0.119 −0.2994 −0.299 0.5637 0.564
90◦ 0.0389 0.039 0.0000 0.000 0.0028 0.003

Table 2: Results for the rigid inclusion

We used partially discontinuous elements of order two. The results obtained are
in good agreement with those taken from Lekhtniski’s book [9].

7 Concluding remarks
For the sake of completeness, note that [10] by Constanda gives an asymptotic
expansion for the displacements at infinity which ensures the validity of the Betti
formula for exterior regions. Under this condition the total strain energy stored
in the region is bounded. In addition uniqueness and existence proofs are easy to
give.

We have modified the Somigliana formulas for exterior regions by assuming that
the strains are constants and accordingly the displacements are linear at infinity.
Under this condition the strain energy density is bounded (but not necessarily the
strain energy), and there is no need to replace the exterior region by a finite one
if a constant stress condition is prescribed at infinity. This can be an advantage if
one considers an infinite plane with holes or cracks in it and the plane is subjected
to constant stresses at infinity and an attempt is made to determine the stresses
in finite. It is easy to modify existing codes to perform computations. Results for
two simple problem are also presented.
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A Formulae for strains
Making use of equations (13), (14) and (26) from the kinematic equations (1) we obtain

eαβ =

∮

Lo

tλ(M◦)Dλαβ(M◦, Q) dsM◦ −
∮

Lo

uλ(M◦)Sλαβ(M◦, Q) dsM◦ Q ∈ Ae (37)

where

Dλ11 = Uλ1 ∂1 ,

Dλ12 =
1

2
(Uλ2 ∂1 + Uλ1 ∂2) = Dλ21 ,

Dλ22 = Uλ2 ∂2 ,

Sλ11 = Tλ1 ∂1 ,

Sλ12 =
1

2
(Tλ2 ∂1 + Tλ1 ∂2) = Dλ21 ,

Sλ22 = Tλ2 ∂2 .

(38)

If we introduce the notations

b1 =

√
λ1

ρ2
1

, b2 =

√
λ2

ρ2
2

, c =
√

λ1

√
λ2r

2
1 + r2

2 , d = (
√

λ1 −
√

λ2)r2 ,

k1 =
λ

3
2
1 A1

ρ2
1

, k2 =
λ

3
2
2 A2

ρ2
2

, f1 =
A1

(λ
3
2
1 r2

1 + r2
2)

2

, f2 =
A2

(λ
3
2
2 r2

1 + r2
2)

2

(39)

for the derivatives in equation (38) we have

∂1U11 = D
(
b2λ2A

2
1r1 − b1λ1A

2
2r1

)
,

∂1U12 =
DA1A2

1 + d2r2
1

(
2
√

λ1

√
λ2dr2

1 − cd
)

= ∂1U21 ,

∂1U22 = D
(
b1A

2
1r1 − b2A

2
2r1

)
,

∂2U11 = D
(

b2A
2
1r2 − b1A

2
2r2

)
,

∂2U12 =
DA1A2

1 + d2r2
1

[
2dr1r2 − c(

√
λ1 −

√
λ2)r1

]
= ∂2U21 ,

∂2U22 = −D

(
A2

2r2

ρ2
2

√
λ2

− A2
1r2

ρ2
1

√
λ1

)

(40)

and

∂1T11 = D

[
2b2λ2A1r1

ρ2
2

− 2b1λ1A2r1

ρ2
1

]
(r1n1 + r2n2)−D [b2A1 − b1A2] n1 ,

∂1T12 = D

[
2b1λ1A1r1

ρ2
1

− 2b2λ2A2r1

ρ2
2

]
r1n2 −D [b1A1 − b2A2] n2−

−D [2f1λ1r1 − 2f2λ2r1] r2n1 ,

∂1T21 = D

[
2b1λ

2
1A2r1

ρ2
1

− 2b1λ
2
2A1r1

ρ2
2

]
r1n2 −D [b1λ1A2 − b2λ2A1] n2−

−D

[
2b1λ1A2r1

ρ2
1

− 2b2λ2A1r1

ρ2
2

]
r2n1 ,

∂1T22 = D

[
2b1λ1A1r1

ρ2
1

− 2b2λ2A2r1

ρ2
2

]
(r1n1 + r2n2)−D [b1A1 − b2A2] n1 ,

(41a)
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∂2T11 = D

[
b2A12r2

ρ2
2

− b1A22r2

ρ2
1

]
(r1n1 + r2n2)−D [ b2A1 − b1A2] n2 ,

∂2T12 = D

[
b1A12r2

ρ2
1

− b2A22r2

ρ2
2

]
r1n2 −D [2f1r2 − 2f2r2] r2n1+

+ D [f1 − f2] n1 ,

∂2T21 = D

[
b1λ1A22r2

ρ2
1

− b2λ2A12r2

ρ2
2

]
r1n2 −D

[
b1A22r2

ρ2
1

− b2A12r2

ρ2
2

]
r2n1+

+ D [b1A2 − b2A1] n1 ,

∂2T22 = D

[
b1A12r2

ρ2
1

− b2A22r2

ρ2
2

]
(r1n1 + r2n2)−D [b1A1 − b2A2] n2 .

(41b)
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