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Abstract

For 2-D Stokes mixed boundary value problems we construct a boundary
integral equation which couples a conventional boundary integral equation
for the velocity with a hypersingular boundary integral equation for the
traction. Expressing terms in the equation by complex variables, we obtain a
complex boundary integral equation and realize symmetrization of boundary
element scheme by Galerkin method. Applying a boundary limit method, we
obtain exact calculation formulae for calculation of hypersingular boundary
integrals. It is shown that all divergent terms in hypersingular integrals
cancel each other out.

Key words: hypersingular integral, boundary limit method, complex
boundary element method, symmetric boundary element scheme.

AMS 2000 subject classification: 65M38, 65P30, 76M15, 78M15,

1 Introduction

Boundary element method(BEM) allows us to get approximate solutions of prob-
lems of mathematical physics on a domain Ω in Rd(d = 2, 3) by the solution of
boundary integral equations corresponding to the problems.

For large-scale problems, if the final linear systems are symmetric, then itera-
tive methods are useful, which can reduce the required computer memory and has
a good convergence property. In view of this for many problems including poten-
tial problems and elastic one, the symmetrization of boundary element scheme is
widely considered([19]). For example, to get a boundary integral equation for sym-
metric boundary element scheme to solve potential problems with mixed boundary
conditions, first one express the solution on Ω, potential, by the sum of simple layer
and double layer potentials, densities of which are boundary flux and boundary
potential. Then, by taking limit to boundary, one get the “potential boundary in-
tegral equation”. Next, getting the directional derivative of the expression of the
potential and limiting to the boundary again, one get another boundary integral
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equation- “flux boundary integral equation”. The flux boundary integral equa-
tion contains a potential adjoint to the double layer potential and a hypersingular
boundary potential([19]).

In the case of Dirichlet boundary value problem, from the potential bound-
ary integral equation one can get a simple layer potential operator equation with
the unknown boundary flux. The simple layer potential operator is self-adjoint,
and so Galerkin discretization of the equation is symmetric. In the case of mixed
boundary conditions the velocity boundary integral equation includes not only
simple layer potential operator, but also a double layer potential operator which
is not self-adjoint, and so it is difficult to get symmetric discrete scheme from the
equation. Therefore, by combination of the potential boundary integral equation
with the flux boundary integral equation symmetrizations of conventional poten-
tial problems([1, 17]) are realized. The flux boundary integral equation contains
hypersingular integral, so, it is important to get exact values of these hypersingular
integrals([9]).

For calculation of hypersingular integrals Hadamard’s finite part integral is
usually used. To apply Hadamard’s finite part integral, basis functions which
become density functions must be in at least C1,α-class, but piecewise linear con-
tinuous basis used widely in boundary element scheme belong to C0,1-class. Such
situations led to studies of methods to weaken the singularity of integrals([3, 4])
and the smoothness requirement of density functions([16, 20]) and to get numerical
values([6, 12, 18]).

In [19], in particular, as a method to calculate hypersingular integral in bound-
ary element schemes unlike to Hadamard finite part integral method, the boundary
limit method was suggested. Main procedure of the boundary limit method is as
follows. First, with source point off the boundary, one integrates. Then taking
limit of the result as the point goes to the boundary, one extracts a converging
finite part to be regarded as an integral value and check whether all divergent
terms are canceled. Authors mentioned that it is an advantage of the boundary
limit method that it can obtain the value of hypersingular integral even when
density function is not smooth, as piecewise linear continuous basis function, and
deal with arbitrary integrals with singularity by the same way.

But, for mixed boundary value problems of the Stokes equation there is no
such results-symmetrizations and evaluation of hypersingular integrals, yet.

On the other hand, the boundary element method works, commonly, in real
variables.

For two dimensional vector-value problems such as 2-D Stokes flow problem,
however, to consider complex variables has advantage that enable to avoid com-
plexity due to matrix-vector operation.

Complex boundary element methods were studied in [13, 14, 21] for potential
problems, in [5] for Helmholtz equation, in [8] for electrochemical system, in [10]
for flow around obstacles and in [15] for linear elastostatic problems.

Using the formulae in [15] for a linear elastic problem, [14] studied complex
potential expressions for 2-D Stokes flow problems. But, the results are not for
symmetric scheme.
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In this paper, we are concerned with symmetric complex boundary element
scheme for 2-D Stokes equation with velocity and traction boundary conditions
together. Following the ideas for potential and elastic problems above mentioned,
we have a real boundary integral equation to get symmetric boundary element
scheme. Expressing variables in the real boundary integral equation by complex
variables, we obtain the complex boundary integral equation. We construct a
discrete scheme by Galerkin method. And assuming existence of hypersingular
complex boundary integrals on discrete boundary, we prove the convergence and
stability of the scheme. Furthermore, applying the boundary limit method in [19]
and proving that all divergent terms are canceled, we get formulae for calculation
of all hypersingular complex boundary integrals.

This paper consists of 5 sections.
In Section 2, combining a “velocity boundary integral equation” and a “traction

one” on the hole boundary, we get a system of “velocity equation” on the portion
for velocity boundary condition and “traction equation” on the portion for trac-
tion boundary condition, and apply Galerkin scheme to get symmetric boundary
element scheme. Then, 5 basic terms are expressed by complex variables and us-
ing them, complex expressions of boundary potentials are obtained(Theorem 2.1).
After that, a complex boundary element scheme is constructed by using piecewise
linear continue elements for the velocity and piecewise constant elements for the
traction. Symmetry, convergence and stability of the scheme are proved(Theorem
2.2).

In Section 3, by the boundary limit method we get the exact formulae for
calculation of hypersingular complex boundary integrals in the scheme and prove
cancelation of all divergent terms(Theorem 3.1-3.5).

In Section 4 an algorithm to calculate all elements excluding hypersingular
boundary integral in coefficient matrix of the complex discrete equation and ele-
ments in right-hand side of the equation.

In Section 5, results of the paper are summarized.
Finally, many proofs and calculations which make the reading of the paper

difficult are collected in Appendix.

2 Symmetric complex boundary element scheme

2.1 Stokes mixed boundary value problem

Let us consider the following mixed boundary value problem of the Stokes equation.

− µ∆u+∇p = 0, divu = 0, x ∈ Ω ⊂ R2, (1)

u = f, x ∈ Γ1, (2)

T (u) = g, x ∈ Γ2. (3)

Here Ω is a simply connected bounded domain and boundary Γ = Γ̄1 ∪ Γ̄2 is
smooth, u – the velocity, p – the pressure, µ – the dynamical viscocity coefficient,f
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andg are, respectively, traces of velocityu and tractionT (u) on Γ1 and Γ2, and n
is outward outward normal unit vector on the boundary of domain.

Traction is given by

T (u) := −pn+ µ(∇u+∇uT )n (4)

and it’s adjoint traction is defined by

T ′(u) := pn+ µ(∇u+∇uT )n. (5)

Let E(x, y) be the fundamental solution(matrix) to the Stokes operator. Define

F (x, y) := T ′
y(E(x, y))T ,

G(x, y) := Tx(E(x, y)),

H(x, y) := −TxT
′
y(E(x, y))T .

Denote by V , K, K ′ and D, respectively, boundary integral operators of
which kernels are, respectively, E(x, y), F (x, y), G(x, y) and H(x, y). Then, by
the boundary integral operators we have the following continuous mappings([11]).

V : H− 1
2 (Γ) → H

1
2 (Γ), K : H

1
2 (Γ) → H

1
2 (Γ),

K ′ : H− 1
2 (Γ) → H− 1

2 (Γ), D : H
1
2 (Γ) → H− 1

2 (Γ).

With tensor notation, kernel functions can be written as follows([11, 15]).

Ei,j(x, y) =
1

4πµ

(
δij log

1

r
+ r,ir,j −

1

2
δij

)
, (6)

Fi,j(x, y) = − 1

πr
(r,ir,jr,knk(y)) , (7)

Gi,j(x, y) =
1

πr
(r,ir,jr,knk(x)) , (8)

Hi,j(x, y) =
µ

πr2
(x, y) =

µ

πr2
[(δijr,kr,k)r,lnl(y)

+ ni(y)r,jr,k + nk(y)r,ir,j + δiknj ]nk(x),
(9)

where r = |x − y|, r,j = ∂r/∂yj and Einstein convention for sub-indices is used.
Constant term −1

2δij in expression (6), which does not affect the solution, is added
for convenience in the complex variable expression.

Putting u|Γ =: φ, T (u)|Γ =: τ , we obtain boundary integral equation([11])

1

2
φ(x) = V τ(x)−Kφ(x), x ∈ Γ,

1

2
τ(x) = K ′τ(x) +Dφ(x), x ∈ Γ.
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Let us introduce functional spaces as follows.

s ≥ 0 : Hs(Γi) := {v|Γi : v ∈ Hs(Γ)} ,

H̃s(Γi) := complete {v ∈ Hs(Γ) : supp(v) ⊂ Γi} ,

s < 0 : Hs(Γi) :=
(
H−s

0 (Γi)
)′
, H̃s(Γi) :=

(
H̃−s(Γi)

)′
.

Denote Hs(Γj) → Hs(Γi) – contractions of the operators V , K, K ′ and D,
respectively, by Vi,j , Ki,j , K

′
i,j and Di,j .

Setting T (u)|Γ1 = w, u|Γ2 = ϕ and taking into account the boundary condition
of the first boundary integral equation atx ∈ Γ1 and one of the second equation
atx ∈ Γ2, we get the following boundary integral equation

1

2
f(x) +K1,1f(x) +K1,2ϕ(x)− V1,1w(x)− V1,2g(x) = 0, x ∈ Γ1,

1

2
g(x)−K ′

2,1w(x)−K ′
2,2g(x)−D2,1f(x)−D2,2ϕ(x) = 0, x ∈ Γ2,

which is written as follow.

[
V1,1 −K1,2

K ′
2,1 D2,2

] [
w
ϕ

]
=

[
−V1,2 1/2I1 +K1,1

1/2I2 −K ′
2,2 −D2,1

] [
g
f

]
(10)

where Ii, i = 1, 2 are ,respectively, identity in Γi.
Let

VΓ := H− 1
2 (Γ)×H

1
2 (Γ), ṼΓ := H̃− 1

2 (Γ1)× H̃
1
2 (Γ2)

and rewrite

[
τ
φ

]
∈ VΓ as

[
τ
φ

]
=

[
τ0

φ0

]
+

[
τ̂
φ̂

]
,

[
τ0

φ0

]
∈ ṼΓ,

[
τ̂
φ̂

]
∈ VΓ.

Define a bilinear form

a

([
τ ′

φ′

]
,

[
ξ
p

])
:=

⟨[
V −K
K ′ D

] [
τ ′

φ′

]
,

[
ξ
p

]⟩
, ṼΓ × ṼΓ → R.

Then, by (10) we have

a

([
τ0

φ0

]
,

[
ξ
p

])
= b

([
ξ
p

])
, ∀

[
ξ
p

]
∈ ṼΓ, (11)

where

b

([
ξ
p

])
:=

⟨[
−V 1/2I +K

1/2I −K ′ −D

] [
τ̂
φ̂

]
,

[
ξ
p

]⟩
. (12)
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Now, we convert real vector potentials V τ(x), Kφ(x), K ′τ(x) and Dφ(x) to
complex variable forms. To this end, put

ς := (x1 + ix2)|Γ, z := (y1 + iy2)|Γ, n(z) = (n1(y) + in2(y))|Γ,

φ(z) := φ1(y) + iφ2(y), τ(z) := τ1(y) + iτ2(y).

Then, we have that

x1 − y1 =
1

2
(ς − z + ς − z), x2 − y2 =

1

2i
(ς − z − ς − z)

and components of vector value function (u1(y), u2(y))
T are as follows.

u1(y) =
1

2

(
u(z) + u(z)

)
, u2(y) =

1

2i

(
u(z)− u(z)

)
.

Also we have the following equalities which are proved in A1 of the Appendix.

(i) r,j(x, y)uj(y) = − 1
2r

(
(ς − z)u(z) + (ς̄ − z̄)u(z)

)
,

(ii) nj(y)uj(y) =
1
2

(
n(z)u(z) + n(z)u(z)

)
,

(iii) r,j(x, y)nj(x) = − 1
2r

(
(ς − z)n(ς) + (ς̄ − z̄)n(ς)

)
,

(iv) r,j(x, y)nj(y) = − 1
2r

(
(ς − z)n(z) + (ς̄ − z̄)n(z)

)
,

(v) r,i(x, y)r,j(x, y)uj(y) =
1
2

(
ς−z
ς̄−z̄u(z) + u(z)

)
.

Theorem 2.1 The followings equalities hold.∫
Γ

E(x, y)τ(y)dΓ(y) =

∫
Γ

E1,j(x, y)τj(y)dΓ(y) + i

∫
Γ

E2,j(x, y)τj(y)dΓ(y)

=
1

8πµ

∫
Γ

(
log

1

ς − z
τ(z) + log

1

ς̄ − z̄
τ(z) +

ς − z

ς̄ − z̄
τ(z)

)
dΓ(z),

(13)

∫
Γ

F (x, y)φ(y)dΓ(y) =

∫
Γ

F1,j(x, y)φj(y)dΓ(y) + i

∫
Γ

F2,j(x, y)φj(y)dΓ(y)

=
1

4π

∫
Γ

(
1

ς − z
n(z)φ(z) +

ς − z

(ς̄ − z̄)
2n(z)φ(z)

+
1

ς̄ − z̄

(
n(z)φ(z) + n(z)φ(z)

))
dΓ(z),

(14)

∫
Γ

G(x, y)τ(y)dΓ(y) =

∫
Γ

G1,j(x, y)τj(y)dΓ(y) + i

∫
Γ

G2,j(x, y)τj(y)dΓ(y)

= − 1

4π

∫
Γ

((
1

ς − z
τ(z) +

1

ς̄ − z̄
τ(z)

)
n(ς)

+

(
1

ς̄ − z̄
τ(z) +

ς − z

(ς̄ − z̄)
2 τ(z)

)
n(ς)

)
dΓ(z),

(15)
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∫
Γ

H(x, y)φ(y)dΓ(y) =

∫
Γ

H1,j(x, y)φj(y)dΓ(y) + i

∫
Γ

H2,j(x, y)φj(y)dΓ(y)

= − µ

2π

∫
Γ

((
1

(ς − z)
2n(z)φ(z) +

1

(ς̄ − z̄)
2n(z)φ(z)

)
n(ς)

+

(
1

(ς̄ − z̄)
2

(
n(z)φ(z) + n(z)φ(z)

)
+

2(ς − z)

(ς̄ − z̄)
3 n(z)φ(z)

)
n(ς)

)
dΓ(z).

(16)

Proof.
Now using formulae of kernel functions (6)-(9) and equalities(i)-(v), we have

that

Ei,j(x, y)τj(y) =

=
1

4πµ

(
τ(z)

1

2
log

1

(ς − z)(ς̄ − z̄)
+

1

2

(
ς − z

ς̄ − z̄
τ(z) + τ(z)

)
− τ(z)

2

)
=

1

8πµ

(
log

1

ς − z
τ(z) + log

1

ς̄ − z̄
τ(z) +

ς − z

ς̄ − z̄
τ(z)

)
,

Fi,j(, y)φj(y) =

= − 1

πr

1

2

(
ς − z

ς̄ − z̄
φ(z) + φ(z)

)
−1

2|ς − z|

(
(ς − z)n(z) + (ς̄ − z̄)n(z)

)
=

1

4π

(
ς − z

ς̄ − z̄
φ(z) + φ(z)

)
1

|ς − z|2
(
(ς − z)n(z) + (ς̄ − z̄)n(z)

)
=

1

4π

(
ς − z

ς̄ − z̄
φ(z) + φ(z)

)(
n(z)

ς̄ − z̄
+

n(z)

ς − z

)

=
1

4π

(
n(z)φ(z)

ς − z
+

1

ς̄ − z̄

(
n(z)φ(z) + n(z)φ(z)

)
+

ς − z

(ς̄ − z̄)2
n(z)φ(z)

)
,

Gi,j(x, y)τj(y) =

=
1

πr

1

2

(
ς − z

ς − z
τ(z) + τ(z)

)
−1

2r

(
(ς − z)n(ς) + (ς − z)n(ς)

)
=

−1

4π

(
n(ς)τ(z)

ς − z
+

1

ς̄ − z̄

(
n(ς)τ(z) + n(ς)τ(z)

)
+

ς − z

(ς̄ − z̄)2
n(ς)τ(z)

)
.

Let us rewrite the (9) as follows

Hi,j(x, y)φj(y) =
µ

πr2
[φir,knkr,lnl + r,iφknkr,lnl

− 8r,ir,jφjr,knkr,lnl + nir,jφjr,knk + r,inknkr,jφj + ninjφj ].

By (i)-(v) terms in [ ] of the right hand side are expressed as follows.
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φir,knkr,lnl =

=
−φ(z)

2r

(
(ς̄ − z̄)n(ς) + (ς − z)n(ς)

) −1

2r

(
(ς̄ − z̄)n(z) + (ς − z)n(z)

)
=

n(ς)

4r2

(
(ς̄ − z̄) (ς̄ − z̄)φ (z)n(z) + (ς − z) (ς̄ − z̄)φ (z)n(z)

)
+

n(ς)

4r2

(
(ς − z) (ς̄ − z̄)φ (z)n(z) + (ς − z) (ς − z)φ (z)n(z)

)
,

r,iφknkr,lnl =

=
−(ς − z)

2r

(
φ(z)n(ς) + φ(z)n(ς)

) −1

2r

(
(ς̄ − z̄)n(z) + (ς − z)n(z)

)
=

n(ς)

4r2

(
(ς − z)(ς̄ − z̄)φ(z)n(z) + (ς − z)(ς − z)φ(z)n(z)

)
+

n(ς)

4r2

(
(ς − z)(ς̄ − z̄)φ(z)n(z) + (ς − z)(ς − z)φ(z)n(z)

)
,

− 8r,ir,jφjr,knkr,lnl = 8
ς − z

r

−1

2r

(
(ς − z)φ(z) + (ς̄ − z̄)φ(z)

)
× −1

2r

(
(ς̄ − z̄)n(ς) + (ς − z)n(ς)

) −1

2r

(
(ς̄ − z̄)n(z) + (ς − z)n(z)

)
=

−1

4r2
n(ς)

4

r2

(
(ς − z)2φ(z) + (ς − z)(ς̄ − z̄)φ(z)

)
×
(
(ς̄ − z̄)2n(z) + (ς̄ − z̄)(ς − z)n(z)

)
+

−1

4r2
n(ς)

4

r2

(
(ς − z)2φ(z) + (ς − z)(ς̄ − z̄)φ(z)

)
×
(
(ς − z)(ς̄ − z̄)n(z) + (ς − z)2n(z)

)
=

−1

4r2
n(ς)4

(
ς − z

ς̄ − z̄
φ(z) + φ(z)

)(
(ς̄ − z̄)2n(z) + (ς̄ − z̄)(ς − z)n(z)

)
+

−1

4r2
n(ς)4

(
ς − z

ς̄ − z̄
φ(z) + φ(z)

)(
(ς − z)(ς̄ − z̄)n(z) + (ς − z)2n(z)

)
,

nir,jφjr,knk =

=
−n(z)

2r

(
(ς − z)φ(z) + (ς̄ − z̄)φ(z)

) −1

2r

(
(ς̄ − z̄)n(ς) + (ς − z)n(ς)

)
=

n(ς)

4r2

(
(ς − z)(ς̄ − z̄)φ(z)n(z) + (ς̄ − z̄)(ς̄ − z̄)φ(z)n(z)

)
+

n(ς)

4r2

(
(ς − z)(ς − z)φ(z)n(z) + (ς − z)(ς̄ − z̄)φ(z)n(z)

)
,

S. G. Hong / Electronic Journal of Boundary Elements, Vol. 13, No. 1, pp. 1-32 (2016)

8



r,inknkr,jφj =

=
z − ς

2r

(
n(z)n(ς) + n(z)n(ς)

) −1

2r

(
(ς − z)φ(z) + (ς̄ − z̄)φ(z)

)
=

n(ς)

4r2

(
(ς − z)(ς − z)φ(z)n(z) + (ς − z)(ς̄ − z̄)φ(z)n(z)

)
+

n(ς)

4r2

(
(ς − z)(ς − z)φ(z)n(z) + (ς − z)(ς̄ − z̄)φ(z)n(z)

)
,

ninjφj = n(ς)
1

2

(
n(z)φ(z) + n(z)φ(z)

)
=

1

4r2
n(ς)(ς − z)(ς̄ − z̄)2

(
n(z)φ(z) + n(z)φ(z)

)
.

Therefore

Hi,j(x, y)φj(y) =

=
µ

4πr4
n(ς) { (ς̄ − z̄)(ς̄ − z̄)φ(z)n(z) + (ς − z)(ς̄ − z̄)φ(z)n(z)

+ (ς − z)(ς̄ − z̄)φ(z)n(z) + (ς − z)(ς − z)φ(z)n(z)

− 4(ς − z)(ς̄ − z̄)φ(z)n(z)− 4(ς − z)2φ(z)n(z)

− 4(ς̄ − z̄)2φ(z)n(z)− 4(ς̄ − z̄)(ς − z)φ(z)n(z)

+ (ς − z)(ς̄ − z̄)φ(z)n(z) + (ς̄ − z̄)(ς̄ − z̄)φ(z)n(z)

+ (ς − z)(ς − z)φ(z)n(z) + (ς − z)(ς̄ − z̄)φ(z)n(z)

+ 2(ς − z)(ς̄ − z̄)φ(z)n(z) + 2(ς − z)(ς̄ − z̄)φ(z)n(z) }

+
µ

4πr4
n(ς) { (ς − z) (ς̄ − z̄)φ (z)n(z) + (ς − z) (ς − z)φ (z)n(z)

+ (ς − z)(ς̄ − z̄)φ(z)n(z) + (ς − z)(ς − z)φ(z)n(z)

− 4 (ς − z)
2
φ(z)n(z)− 4

(ς − z)3

(ς̄ − z̄)
φ(z)n(z)

− 4 (ς − z) (ς̄ − z̄)φ(z)n(z)− 4 (ς − z)
2
φ(z)n(z)

+ (ς − z) (ς − z)φ(z)n (z) + (ς − z) (ς̄ − z̄)φ(z)n (z)

+ (ς − z)(ς − z)φ(z)n(z) + (ς − z)(ς̄ − z̄)φ(z)n(z) }
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=
−µ

2πr4

{(
(ς̄ − z̄)

2
φ(z)n(z) + (ς − z)2φ(z)n(z)

)
n(ς)

+

(
(ς − z)

2
(
φ(z)n(z) + φ(z)n(z)

)
+ 2

(ς − z)3

(ς̄ − z̄)
φ(z)n(z)

)
n(ς)

}

= − µ

2π

{(
1

(ς − z)
2φ(z)n(z) +

1

(ς̄ − z̄)
2φ(z)n(z)

)
n(ς)

+

(
1

(ς̄ − z̄)
2

(
φ(z)n(z) + φ(z)n(z)

)
+

2(ς − z)

(ς̄ − z̄)3
φ(z)n(z)

)
n(ς)

}
.

This finishes the proof of the theorem.�

2.2 Symmetric complex boundary element scheme

We suppose that Γh = Γ1h ∪ Γ2h is quasi-uniform discretization of Γ and

Γ1h =

N1∪
s=1

[zs, zs+1],Γ2h =

N2−1∪
t=0

[zt, zt+1], N1 +N2 =: N, (17)

where the order of nodes is put along the curve as counter-clockwise. Define
boundary element spaces

Sh := S1
h × S2

h ⊂ ṼΓ, (18)

S1
h := span {ws : supp(ws) ⊂ Γ1h, s = 1, · · ·, N1},

S2
h := span {ϕt : supp(ϕt) ⊂ Γ2h, t = 1, · · ·, N2}.

Here basis functions are

ws(z) =

{
1 z ∈ [zs, zs+1]
0 z /∈ [zs, zs+1]

, (19)

ϕt(z) =

 (zt−1 − z)/(zt−1 − zt) z ∈ [zt−1, zt]
(zt+1 − z)/(zt+1 − zt) z ∈ [zt, zt+1]
0 z /∈ [zt−1, zt] ∪ [zt, zt+1]

. (20)

Then, we get a discrete equation based on Galerkin method⟨[
Vh −Kh

K ′
h Dh

] [
τ0h
φ0
h

]
,

[
ξh
ph

]⟩
=

=

⟨[
−Vh 1/2I +Kh

1/2I −K ′
h −Dh

] [
τ̂
φ̂

]
,

[
ξh
ph

]⟩
∀
[
ξh
ph

]
∈ Sh,

(21)
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where Vh, Kh, K
′
h, Dh, which are discretizations of V , K, K ′, D are defined on

space Sh, and the unknown vector is

[
τ0h
φ0
h

]
∈ S0

h := ṼΓ∩Sh. Putting τ0h =
N1∑
s=1

αsws

and φ0
h =

N2∑
t=1

βtϕt, we get a system of equations equivalent to (21)

N1∑
s=1

⟨Vhαsws, ws′⟩ −
N2∑
t=1

⟨Khβtϕt, ws′⟩ =
⟨
b̂, ws′

⟩
s′ = 1, · · ·, N1,

N1∑
s=1

⟨K ′
hαsws, ϕt′⟩+

N2∑
t=1

⟨Dhβtϕt, ϕt′⟩ = ⟨ĉ, ϕt′⟩ t′ = 1, · · ·, N2.

(22)

The potentials in the left hand side of (22) are calculated, respectively, by the
potential expressions of (13)-(16) on Γh.

In real variable, (22) are the system of 2Norder. We split the 2N × 2N−
coefficient matrix into four blocks by Vh,Kh,K

′
h, Dh. Then we get

Theorem 2.2 Assume that a hypersigular integral in the left hand side of (11)

has a finite value. Then equation (11) has a unique solution

[
τ0

φ0

]
∈ ṼΓ.

Assume that total of hypersigular integrals of every element in Dh-blocks has finite
value. Then, Vh and Dh-blocks are, respectively, symmetric, Kh and K ′

h-blocks

are block skewsymmetric each other, and (21) has a unique solution

[
τ0h
φ0
h

]
∈ S0

h.

Furthermore, if condition

[
τ0

φ0

]
∈ H̃−1/2+σ(Γ1) × H̃1/2+σ(Γ2), σ < 1

2 holds, then

we have error estimation

∥∥∥∥[τ0φ0

]
−
[
τ0h
φ0
h

]∥∥∥∥
Ht−1(Γ)×Ht(Γ)

≤ CN t−s

∥∥∥∥[τ0φ0

]∥∥∥∥
Hs−1(Γ)×Hs(Γ)

,

− 1

2
≤ t ≤ s ≤ σ +

1

2
.

(23)

Proof. The operator V is a self-adjoint operator satisfying

⟨V τ, τ⟩L2(Γ)
≥ cV1 ∥τ∥2

H− 1
2 (Γ)

,∀τ ∈ H− 1
2 (Γ), ∃cV1 > 0, (24)

and the operator D is a self-adjoint operator satisfying

⟨Dφ,φ⟩L2(Γ)
≥ cD2 ∥φ∥2

H
1
2 (Γ)

,∀φ ∈ H
1
2 (Γ)/ ker(D), ∃cD2 > 0. (25)

In the case of linear elastic potential operators this result is already proved
(Theorem 2 in [7]). Regarding the Stokes flow potential operator as special case
of linear elastic potential operators with ν = 1

2 , we get (24), (25).
Since

−⟨Kφ, τ⟩+ ⟨φ,K ′τ⟩ = −⟨φ,K ′τ⟩+ ⟨φ,K ′τ⟩ = 0,
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we have

a

([
τ
φ

]
,

[
τ
φ

])
≥ c

∥∥∥∥[τφ
]∥∥∥∥2

ṼΓ

∀
[
τ
φ

]
∈ ṼΓ,

where c = min
{
cV1 , c

D
2

}
. By Lax-Milgram theorem we get unique existence of a

solution to (11) and in the same way we get the solution for (21).
We can get the error estimation of the (23) extending the results of Theorem 1

in [17] for scalar to vector space. The symmetry of matrix-blocks will be described
in detail in A2 of the the Appendix. �

3 Analytical calculation of hypersingular integrals

In (22), integrals ⟨Vhαsws, ws′⟩ and ⟨Khβtϕt, ws′⟩, ⟨K ′
hαsws, ϕt′⟩ contain weak

singular integrals, and ⟨Dhβtϕt, ϕt′⟩ have hypersingular integrals.

3.1 Calculation of hypersingular boundary integral by boundary limit
method

In this subsection we apply the boundary limit method in [19] to hypersingular
boundary integrals given on the boundary Γ of domain Ω in complex plane C.

In the boundary element scheme in Rd(d = 2, 3), let us consider the definition
of hypersingular boundary integral(cf. (1.2.6) in [11])

Du(x) = − lim
x′→x∈Γ,x′∈Ω

∇x′ · nx

∫
Γ

∂E

∂ny
(x′, y)u(y)dΓy.

To be clear, we assume a point x′ be on the normal line passing point x.
Since x′ ∈ Ω, y ∈ Γ, it implies |x′ − y| > 0, therefore

∇x′ · nx

∫
Γ

∂E

∂ny
(x′, y)u(y)dΓ(y) =

∫
Γ

∂2E

∂nx∂ny
(x′, y)u(y)dΓ(y)

because ∂E
∂ny

(x′, y) is smooth and so differential symbol ∇x′ · nx = ∂
∂nx

can be

entered into integral symbol. Putting H(x′, y) := − ∂2E
∂nx∂ny

(x′, y), we get

Du(x) = lim
x′→x∈Γ,x′∈Ω

∫
Γ

H(x′, y)u(y)dΓ(y). (26)

Denoting |x′ − x| = ε, we have x′ = x− nxε, and

Du(x) = lim
ε→0

∫
Γ

H(x− nxε, y)u(y)dΓy. (27)
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Formula (27) is boundary limit scheme in [19].
In the case of complex variable, definition (26) of hypersingular boundary in-

tegral can be written as follows

Du(ς) = lim
Ω�ς′→ς∈Γ

∫
Γ

H(ς ′, z)u(z)dΓ(z). (28)

For simplicity of notation, we used the same function symbols without change.
Assume a point ς ′ is on the normal line passing the point ς and n(ς ′) = n(ς).

If the point ς ′ be away ε outside from the boundary, then ς ′ = ς + εn (ς) and

Du(ς) = lim
ε→0

∫
Γ

H (ς + εn(ς), z)u(z)dΓ(z). (29)

Denoting by t(ς) the tangent vector with counter-clockwise along the boundary
curve at the point ς ′, we have n(ς) = −it(ς), and so (26) may written as follows.

Du(ς) = lim
ε→0

∫
Γ

H (ς − iεt(ς), z)u(z)dΓ(z). (30)

As we see, boundary limit method requires only integrability of density u(y).
Therefore, when u(z) is continue we can apply boundary limit method. Sign “-”
before iε in (30) means approach process from outside to boundary. In contrast,
sign “+” means from inside to boundary.

3.2 Calculation of hypersingular matrix element

As mentioned at the beginning of this section, hypersingular integrals appear
in calculation of elements of block matrices ⟨Dhβtϕt, ϕt′⟩ , t, t′ = 1, ..., N2. In
more detail, it is only when supports of basis functions ϕt and ϕt′ are overlapped,
that is, t′ = t (supports are coincided completely) or |t′ − t| = 1 (supports are
overlapped by half)

Let

et := zt+1 − zt, Lt := |et|, t = 1, ..., N2 (31)

and

z = zt + ξet, z ∈ [zt, zt+1], 0 ≤ ξ ≤ 1,
ς = zt + ηet, ς ∈ [zt, zt+1], 0 ≤ η ≤ 1.

(32)

Then, we get

ϕt(z) =

{
ξ z ∈ [zs−1, zt]
1− ξ, z ∈ [zt, zt+1]

, (33)

n(z) = −iet/Lt, dΓ(z) = Ltdξ, z ∈ [zt, zt+1]. (34)
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3.2.1 Calculation of matrix element ⟨Dhβtϕt, ϕt′⟩ , t = t′

Since

supp (ϕt(z)) = supp (ϕt′(ς)) = [zt−1, zt] ∪ [zt, zt+1],

interior integral variable z and exterior integral variable ς of multiple integral
zt+1∫
zt−1

dΓ(ς)
zt+1∫
zt−1

dΓ(z) are met each other in integral process, and the integral is

hypersingular. Using expression (16) of hypersingular potential, we have

⟨Dhβtϕt, ϕt⟩ =

− µ

2π

zt+1∫
zt−1

ϕt(ς)dΓ(ς)

zt+1∫
zt−1

((
n(z)βtϕt(z)

(ς − z)2
+

n(z)βtϕt(z)

(ς̄ − z̄)2

)
n(ς)

+

(
1

(ς̄ − z̄)2

(
n(z)βtϕt(z) + n(z)βtϕt(z)

)
+

2(ς − z)

(ς̄ − z̄)3
n(z)βtϕt(z)

)
n(ς)

)
dΓ(z)

= − µ

2π
βt

zt+1∫
zt−1

ϕt(ς)dΓ(ς)

zt+1∫
zt−1

(
1

(ς − z)2
n(z)n(ς) +

1

(ς̄ − z̄)2
n(z)n(ς)

)
ϕt(z)dΓ(z)

− µ

2π
β̄t

zt+1∫
zt−1

ϕt(ς)dΓ(ς)

zt+1∫
zt−1

(
n(z)n(ς) + n(z)n(ς)

(ς̄ − z̄)2
+

2(ς − z)

(ς̄ − z̄)3
n(z)n(ς)

)
ϕt(z)dΓ(z).

(35)

Splitting the last two integral terms into elements (suppressing − µ
2π and inte-

grands), we have

βt

zt+1∫
zt−1

zt+1∫
zt−1

= βt

zt∫
zt−1

zt∫
zt−1

+βt

zt∫
zt−1

zt+1∫
zt

+βt

zt+1∫
zt

zt∫
zt−1

+βt

zt+1∫
zt

zt+1∫
zt

=: I1(βt) + I2(βt) + I3(βt) + I4(βt),

(36)

β̄t

zt+1∫
zt−1

zt+1∫
zt−1

= β̄t

zt∫
zt−1

zt∫
zt−1

+β̄t

zt∫
zt−1

zt+1∫
zt

+β̄t

zt+1∫
zt

zt∫
zt−1

+β̄t

zt+1∫
zt

zt+1∫
zt

=: I1(β̄t) + I2(β̄t) + I3(β̄t) + I4(β̄t).

(37)

Finally, we obtain

⟨Dhβtϕt, ϕt⟩ = − µ

2π
I1 −

µ

2π
I2 −

µ

2π
I3 −

µ

2π
I4, (38)

where

Ik = Ik(βt) + Ik(β̄t), k = 1, 2, 3, 4. (39)
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All these integrals are calculated in A4.1 of Appendix.
Among above integrals only I1(β1), I2(β2), I3(β3), I4(β4) have, respectively, hy-

persingularity which imply appearance of divergent terms. But following two the-
orems shown this divergent terms cancel each other out.

First, from the computation of I1(βt) and I2(βt) we get following

Theorem 3.1 The first two integrals − µ
2π I1 and − µ

2π I2 in calculation of element
⟨Dhβtϕt, ϕt⟩ have, respectively, divergent terms µ

2πβt log(ε
2) and − µ

2πβt log(ε
2).

They are cancelled in the sum − µ
2π I1 −

µ
2π I2 and we get finite integral value

− µ

2π
I1 −

µ

2π
I2 = βt

(
− µ

4π

)(
−et−1

et
log(et−1)−

(
2 +

et
et−1

)
log(et)

+

(
2 +

et−1

et
+

et
et−1

)
log(et−1 + et)−

ēt−1

ēt
log(ēt−1)−

(
2 +

ēt
ēt−1

)
log(ēt)

+

(
2 +

ēt−1

ēt
+

ēt
ēt−1

)
log(ēt−1 + ēt)

)
+ β̄t

(
− µ

4π

)(
3
et−1

ēt−1
+

et
ēt
−
(
etēt−1

ē2t
− et−1

ēt

)
log(ēt−1)

+

(
et

ēt−1
− et−1ēt

ē2t−1

)
log(ēt)

(
etēt−1

ē2t
− et−1

ēt
− et

ēt−1
+

et−1ēt
ē2t−1

)
log(ēt−1 + ēt)

)
.

�
(40)

Also from the computation of I3(βt) and I4(βt) we get following

Theorem 3.2 Last two integrals − µ
2π I3 and − µ

2π I4 of (38) in calculation of hy-
persingular element ⟨Dhβtϕt, ϕt⟩ have, respectively, divergent terms − µ

2πβt log(ε
2)

and µ
2πβt log(ε

2) . These are cancelled in sum − µ
2π I3 −

µ
2π I4 and we get the fol-

lowing finite integral value.

− µ

2π
I3 −

µ

2π
I4 = βt

(
− µ

4π

)
×
(
− et
et−1

log(et)−
(
2 +

et−1

et

)
log(et−1) +

(
2 +

et−1

et
+

et
et−1

)
log(et + et−1)

− ēt
ēt−1

log(ēt)−
(
2 +

ēt−1

ēt

)
log(ēt−1) +

(
2 +

ēt−1

ēt
+

ēt
ēt−1

)
log(ēt + ēt−1)

)
+ β̄t

(
− µ

4π

)(
3
et
ēt

+
et−1

ēt−1
−
(
et−1ēt
ē2t−1

− et
ēt−1

)
log(ēt) +

(
et−1

ēt
− etēt−1

ē2t

)
× log(ēt−1) +

(
et−1ēt
ē2t−1

− et
ēt−1

− et−1

ēt
+

etēt−1

ē2t

)
log(ēt + ēt−1)

)
.

�
(41)
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From all integrals of (39), which are calculated in A4.1, we have

Theorem 3.3 Divergent terms being canceled, hypersingular elements
⟨
Dhβtϕt,

ϕt

⟩
, t = 1, ..., N2, have the following finite integral value.

⟨Dhβtϕt, ϕt⟩ =

= βt

(
− µ

2π

)(
−
(
1 +

et−1

et

)
log(et−1)−

(
1 +

et
et−1

)
log(et)

+

(
2 +

et−1

et
+

et
et−1

)
log(et−1 + et)−

(
1 +

ēt−1

ēt

)
log(ēt−1)

−
(
1 +

ēt
ēt−1

)
log(ēt) +

(
2 +

ēt−1

ēt
+

ēt
ēt−1

)
log(ēt−1 + ēt)

)
+ β̄t

(
− µ

2π

)(
2

(
et−1

ēt−1
+

et
ēt

)
+

(
et−1

ēt
− etēt−1

ē2t

)
log(ēt−1)

+

(
et

ēt−1
− et−1ēt

ē2t−1

)
log(ēt) +

(
etēt−1

ē2t
− et−1

ēt
− et

ēt−1
+

et−1ēt
ē2t−1

)
log(ēt−1 + ēt)

)
.

�
(42)

3.2.2 Calculation of matrix element ⟨Dhβtϕt, ϕt′⟩ , |t− t′| = 1

Without loss of generality, suppose that t′ = t+ 1. Then

supp(ϕt(z)) ∩ supp(ϕt′(ς)) = [zt, zt+1].

By (16) we get

⟨Dhβtϕt, ϕt′⟩ = ⟨Dhβtϕt, ϕt+1⟩ =

= − µ

2π
βt

zt+2∫
zt

ϕt+1(ς)dΓ(ς)

zt+1∫
zt−1

(
n(z)n(ς)

(ς − z)2
+

n(z)n(ς)

(ς̄ − z̄)2

)
ϕt(z)dΓ(z)

− µ

2π
β̄t

zt+2∫
zt

ϕt+1(ς)dΓ(ς)

zt+1∫
zt−1

(
n(z)n(ς) + n(z)n(ς)

(ς̄ − z̄)2
+

2(ς − z)

(ς̄ − z̄)3
n(z)n(ς)

)
×

× ϕt(z)dΓ(z).

As (36) and (37) let us express two terms in the right hand side above formula
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as follows.

βt

zt+2∫
zt

zt+1∫
zt−1

= βt

zt+1∫
zt

zt∫
zt−1

+βt

zt+1∫
zt

zt+1∫
zt

+βt

zt+2∫
zt+1

zt∫
zt−1

+βt

zt+2∫
zt+1

zt+1∫
zt

=: I1(βt) + I2(βt) + I3(βt) + I4(βt),

β̄t

zt+2∫
zt

zt+1∫
zt−1

= β̄t

zt+1∫
zt

zt∫
zt−1

+β̄t

zt+1∫
zt

zt+1∫
zt

+β̄t

zt+2∫
zt+1

zt∫
zt−1

+β̄t

zt+2∫
zt+1

zt+1∫
zt

=: I1(β̄t) + I2(β̄t) + I3(β̄t) + I4(β̄t).

(43)

Among above integrals only I2(β2) has divergent terms,but this divergent terms
cancel each other out(Appendix:A4.2.), so we get

Theorem 3.4 For every pair (t, t′) such that |t− t′| = 1, element ⟨Dhβtϕt, ϕt′⟩ ,
canceling divergent terms each other, has a finite integral value. �

As shown above, elements of boundary element matrix be calculated by various
types of integrals, where the element corresponding to hypersingular integral can
have divergent terms. If there exist a element that it’s divergent terms are not
cancelled, the scheme is useless.

From this point of view we define the compatibility of the scheme.

Definition 3.1 When for every element determined by hypersingular integral among
elements of discrete matrices obtained in boundary element scheme, all divergent
terms are cancelled each other, we say the scheme have compatibility.

Theorem 3.5 Galerkin scheme (22) has compatibility.

Proof. In the matrix calculation of the left hand side in (22) divergent terms
are from Dh-block. In detail, divergent terms are from the hypersingular integral
element ⟨Dhβtϕt, ϕt′⟩, t′ = t in which supports of basis functions in interior and
exterior integral are coincided completely and the hypersingular integral element
⟨Dhβtϕt, ϕt′⟩, |t′ − t| = 1 in which the supports are coincided by half, and not
from others in Dh-block.

Theorem 3.3 shows that divergent terms from hypersingular integral
⟨Dhβtϕt, ϕt′⟩, t′ = t, are cancelled and Theorem 3.4 does the same for the case
of hypersingular integral ⟨Dhβtϕt, ϕt′⟩ , |t′ − t| = 1. Since all divergent terms are
cancelled, the scheme has compatibility. �

4 Algorithm

Step 1. Construction of complex discrete equation
In the matrix calculation of the final discrete equation (22) calculation of Vh

- block elements can be fulfilled by simple analytical calculation because operator
Vh is weak singular and basis functions ws, ws′ are constants.
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For elements ofKh,K
′
h-blocks, supports of corresponding basis functions ϕt, ws′

and ws, ϕt′ have no subsection, which allow us to calculate them by quadrature.
For elements of Dh - blocks, since in the case of |t − t′| > 1 supports of basis

functions ϕt, ϕt′ have no subsection or only one point as subsection, it can be
calculated by quadrature or simple analytical integral.

Right hand side of discrete equation (22) may be written as follows.⟨
b̂, ws′

⟩
:= −⟨Vhτ̂ , ws′⟩+ 1

2 ⟨φ̂, ws′⟩+ ⟨Khφ̂, ws′⟩ ,
⟨ĉ, ϕt′⟩ := 1

2 ⟨τ̂ , ϕt′⟩ − ⟨K ′
hτ̂ , ϕt′⟩ − ⟨Dhφ̂, ϕt′⟩ ,

(44)

where

[
τ̂
φ̂

]
∈ VΓ is arbitrarily taken with condition τ̂ |Γ2 = g, φ̂|Γ1 = f .

We take an approximation

[
τ̂h
φ̂h

]
∈ Vh as follows.

τ̂h =

N1∑
s=1

τsws +

N2∑
t=1

τN1+tϕt, φ̂h =

N1∑
s=1

φsws +

N2∑
t=1

φN1+tϕt, (45)

where τs, φs, 1 ≤ s ≤ N1 – element mean, τN1+t, φN1+t 1 ≤ t ≤ N2 – node value.
Then, we get

⟨Vhτ̂ , ws′⟩ =
N1∑
s=1

⟨Vhτsws, ws′⟩+
N2∑
t=1

⟨VhτN1+tϕt, ws′⟩ ,

⟨Khφ̂, ws′⟩ =
N1∑
s=1

⟨Khφsws, ws′⟩+
N2∑
t=1

⟨KhφN1+1ϕt, ws′⟩ ,

⟨K ′
hτ̂ , ϕt′⟩ =

N1∑
s=1

⟨K ′
hτsws, ϕt′⟩+

N2∑
t=1

⟨K ′
hτN1+tϕt, ϕt′⟩ ,

⟨Dhφ̂, ϕt′⟩ =
N1∑
s=1

⟨Dhφsws, ϕt′⟩+
N2∑
t=1

⟨DhφN1+1ϕt, ϕt′⟩ ,

(46)

⟨φ̂, ws′⟩ = φs′ , ⟨τ̂ , ϕt′⟩ =
t′+2∑

t=t′−2

τN1+t ⟨ϕt, ϕt′⟩ . (47)

Since the coefficients τs, τN1+t, φs, φN1+1 are known, the integrals above can be
calculated as before.

Step 2. calculation of real discrete equation
Calculating every block of left hand side in (22), we get a complex discrete

equation for s = 1, ..., N1 and t = 1, ..., N2[
As Bt

Cs Dt

] [
αs

βt

]
+

[
Es Ft

Gs Ht

] [
αs

βt

]
=

[
Rs,t

Ss,t

]
(48)

Denoting complex matrices and vectors by As = A
(1)
s +A

(2)
s i and αs = α

(1)
s +iα

(2)
s ,

S. G. Hong / Electronic Journal of Boundary Elements, Vol. 13, No. 1, pp. 1-32 (2016)

18



we have the following real discrete equation
A

(1)
s + E

(1)
s −A

(2)
s + E

(2)
s B

(1)
t + F

(1)
t −B

(2)
t + F

(2)
t

C
(1)
s +G

(1)
s −C

(2)
s +G

(2)
s D

(1)
t +H

(1)
t −D

(2)
t +H

(2)
t

A
(2)
s + E

(2)
s A

(1)
s − E

(1)
s B

(2)
t + F

(2)
t B

(1)
t − F

(1)
t

C
(2)
s +G

(2)
s C

(1)
s −G

(1)
s D

(2)
t +H

(2)
t D

(1)
t −H

(1)
t



α
(1)
s

α
(2)
s

β
(1)
t

β
(2)
t

 =

=
[
R

(1)
s,t S

(1)
s,t R

(2)
s,t S

(2)
s,t

]T
.

(49)

Denoting again the total unknown vector by(
α
(1)
1 , α

(2)
1 , . . . , α

(1)
N1

, α
(2)
N1

, β
(1)
1 , β

(2)
1 , . . . , β

(1)
N2

, β
(2)
N2

)T
= (α1, α2, . . . , α2N1 , α2N1+1, . . . , α2N )

T
=: X

assembling to this vector we combine the total coefficient matrix as following

A =


a1,1 . . . a1,2N1 a1,2N1+1 . . . a1,2N
. . . . . . . . . . . . . . . . . .

a2N1,1 . . . a2N1,2N1 a2N1,2N1+1 . . . a2N1,2N

a2N1+1,1 . . . a2N1+1,2N1 a2N1+1,2N1+1 . . . a2N1+1,2N

. . . . . . . . . . . . . . . . . .
a2N,1 . . . a2N,2N1 a2N,2N1+1 . . . a2N,2N


=

[
AVh

AKh

AK′
h

ADh

]
(50)

and denote the right hand side by B. Then We get the resulting equation

AX = B. (51)

Notes that In matrix A block AVh
and block ADh

are symmetric,respectively,
AKh

and AK′
h
is skewsymmetric.

By solving this equation, we can directly have the traction and the velocity on
the boundary, that is,(

α(1)
s + τ (1)s , α(2)

s + τ (2)s

)
– traction for element [zs, zs+1] ⊂ Γ1h,(

β
(1)
t + φ

(1)
N1+t, β

(2)
t + φ

(2)
N1+t

)
– velocity at node zt ∈ Γ2h.

Step 3. Calculation of velocity and pressure in domain
To get the velocity and pressure at the required position in domain, we can

use the formula

u(ς) = Vh(τ̂ + α̂)(ς)−Kh(φ̂+ β̂)(ς),

p(ς) = Qh(τ̂ + α̂)(ς) +Rh(φ̂+ β̂)(ς), ς ∈ Ω,
(52)
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where

Qhτ(ς) =
1

4π

∫
Γ

(
1

(ς − z)
τ(z) +

1

ς̄ − z̄
τ(z)

)
dΓ(z),

Rhφ(ς)=− µ

2π

∫
Λ

(
1

(ς − z)2
n(z)φ(z) +

1

(ς̄ − z̄)2
n(z)φ(z)

)
dΓ(z),

(53)

α̂s =

{
αs, 1 ≤ s ≤ N1,
0, N1 < s ≤ N,

β̂t =

{
0, 1 ≤ t ≤ N1,
βt−N1 , N1 < t ≤ N.

(54)

5 Conclusion

In the paper, we realize symmetric complex boundary element scheme of 2-D
Stokes mixed boundary value problem and proved the convergence, stability of
the scheme. In particular, we presented the method to convert boundary element
scheme into complex boundary element scheme directly. We got the analytical cal-
culation formulae for hypersingular boundary integral in the scheme by boundary
limit method, to do this, we proved cancelation properties of the divergent terms
in hypersingular integrals.

Appendix

A1. Proof of (i)-(v) in Subsection 2.1

(i) : r,j(x, y)uj(y) = −1

r
((x1 − y1)u1(y) + (x2 − y2)u2(y))

= −1

r

(
1

2
(ς − z + (ς̄ − z̄))u1(y) +

1

2i
(ς − z − (ς̄ − z̄))u2(y)

)
= − 1

2r
((ς − z)(u1(y)− iu2(y)) + (ς̄ − z̄)(u1(y) + iu2(y)))

= − 1

2r

(
(ς − z)u(z) + (ς̄ − z̄)u(z)

)
.

(ii) : nj(y)uj(y) = n1(y)u1(y) + n2(y)u2(y)

=
1

2
(n(z) + n(z))u1(y) +

1

2i
(n(z)− n(z))u2(y)

=
1

2

(
n(z)(u1(y)− iu2(y)) + n(z)(u1(y) + iu2(y))

)
=

1

2

(
n(z)u(z) + n(z)u(z)

)
.

(iii), (iv) are proved similarly to (i).
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(v) : r,i(x, y)r,j(x, y)uj(y) =

=
−1

r
(ς − z)

−1

2r

(
(ς − z)u(z) + (ς̄ − z̄)u(z)

)
=

ς − z

2r2

(
(ς − z)u(z) + (ς̄ − z̄)u(z)

)
=

1

2(ς̄ − z̄)

(
(ς − z)u(z) + (ς̄ − z̄)u(z)

)
=

1

2

(
ς − z

ς̄ − z̄
u(z) + u(z)

)
.

A2. Proof of Symmetry of the Real Coefficient Matrix of the System
in (22)

Denote supports of basis in Γ1h by π1, . . . , πs, . . . , πN1 and in Γ2h by π̄1, . . . , π̄t, . . . , π̄N2 ,
respectively. Note that πs is element, π̄t is sum of two elements which has common
point zt.

Subscripts i, j of entries of the coefficient matrix are define as following.

i =

{
2s′, π = πs′ ∈ Γ1h, s

′ = 1, . . . , N1

2N1 + 2t′ π = π̄t′ ∈ Γ2h, t
′ = 1, . . . , N2

,

j =

{
2s, π = πs ∈ Γ1h, s = 1, . . . , N1

2N1 + 2t π = π̄t ∈ Γ2h, t = 1, . . . , N2
.

Note that i, j = 1, . . . , 2N1, 2N1 + 1, . . . , 2N .
First, we will establish symmetry of Vh.-block

⟨Vhαsws, ws′⟩ =
1

8πµ

∫
Γ

ws′(ς)dΓ(ς)×

×
∫
Γ

(
log

1

ς − z
αsws(z) + log

1

ς̄ − z̄
αsws(z) +

ς − z

ς̄ − z̄
αsws(z)

)
dΓ(z)

=
1

8πµ

∫
πs′

dΓ(ς)

∫
πs

(
log

1

ς − z
αs + log

1

ς̄ − z̄
αs +

ς − z

ς̄ − z̄
αs

)
dΓ(z).
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By Theorem 2.1, in real variable,

⟨Vhαsws, ws′⟩ =
1

4πµ

∫
πs′

dΓ(x)

∫
πs

((
log

1

|x− y|
− 1

2

)
I

+
1

|x− y|2

[
(x1 − y1)

2 (x1 − y1)(x2 − y2)
(x2 − y2)(x1 − y1) (x2 − y2)

2

])
dΓ(y)

[
α
(1)
s

α
(2)
s

]

=:

[
a11;s′s a12;s′s
a21;s′s a22;s′s

][
α
(1)
s

α
(2)
s

]
;

a11;s′s =
1

4πµ

∫
πs′

dΓ(x)

∫
πs

(
log

1

|x− y|
− 1

2
+

(x1 − y1)
2

|x− y|2

)
dΓ(y)

a12;s′s =
1

4πµ

∫
πs′

dΓ(x)

∫
πs

(x1 − y1)(x2 − y2)

|x− y|2
dΓ(y),

a21;s′s =
1

4πµ

∫
πs′

dΓ(x)

∫
πs

(x2 − y2)(x1 − y1)

|x− y|2
dΓ(y) = a12;s′s,

a22;s′s =
1

4πµ

∫
πs′

dΓ(x)

∫
πs

(
log

1

|x− y|
− 1

2
+

(x2 − y2)
2

|x− y|2

)
dΓ(y).

Obviously, element-matrix

[
a11;s′s a12;s′s
a21;s′s a22;s′s

]
is symmetric.

On the other hand, we get

a11;ss′ =
1

4πµ

∫
πs

dΓ(x)

∫
πs′

(
log

1

|x− y|
− 1

2
+

(x1 − y1)
2

|x− y|2

)
dΓ(y)

=
1

4πµ

∫
π′
s

dΓ(y)

∫
πs

(
log

1

|x− y|
− 1

2
+

(x1 − y1)
2

|x− y|2

)
dΓ(x)

=
1

4πµ

∫
π′
s

dΓ(x)

∫
πs

(
log

1

|y − x|
− 1

2
+

(y1 − x1)
2

|y − x|2

)
dΓ(y)

=
1

4πµ

∫
π′
s

dΓ(y)

∫
πs

(
log

1

|x− y|
− 1

2
+

(x1 − y1)
2

|x− y|2

)
dΓ(x) = a11;s′s

Similarly, a12;ss′ = a12;s′s, a21;ss′ = a21;s′s, a22;ss′ = a22;s′s, therefore[
a11;s′s a12;s′s
a21;s′s a22;s′s

]
=

[
a11;ss′ a12;ss′
a21;ss′ a22;ss′

]
.
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For i := 2s′ − 1, j := 2s− 1, s′, s = 1, . . . , N1, expressing as[
a11;s′s a12;s′s
a21;s′s a22;s′s

]
=:

[
ai,j ai,j+1

ai+1,j ai+1,j+1

]
we have[

ai,j ai,j+1

ai+1,j ai+1,j+1

]
=

[
ai,j ai+1,j

ai,j+1 ai+1,j+1

]
=

[
ai,j ai,j+1

ai+1,j ai+1,j+1

]T
Let us express Vh-block by AVh

. Then

AVh
= (ai,j) = (aj,i) = AT

Vh

Similarly, symmetry of Dh-block is established. i.e. ADh
= AT

Dh
.

Now we will establish block skewsymmetry of blocks K ′
h and Kh , i.e. AK′

h
=

−AT
Kh

.

⟨Khβtϕt, ws′⟩ =
1

4π

∫
Γ

ws′(ς)dΓ(ς)×

×
∫
Γ

(
1

ς − z
n(z)βtϕt(z) +

ς − z

(ς̄ − z̄)2
n(z)βtϕt(z)

+
1

ς̄ − z̄

(
n(z)βtϕt(z) + n(z)βtϕt(z)

))
dΓ(z)

=
1

4π

∫
πs′

dΓ(ς)

∫
π̄t

(
1

ς − z
n(z)βtϕt(z) +

ς − z

(ς̄ − z̄)2
n(z)βtϕt(z)

+
1

ς̄ − z̄

(
n(z)βtϕt(z) + n(z)βtϕt(z)

))
dΓ(z)

=

∫
πs′

dΓ(x)

∫
π̄t

(− 1

πr
)(r,ir,jβjtr,knk(y))ϕt(y)dΓ(y)

=

∫
πs′

dΓ(x)

∫
π̄t

[
(x1 − y1)(x1 − y1) (x2 − y2)(x1 − y1)
(x1 − y1)(x2 − y2) (x2 − y2)(x2 − y2)

][
β
(1)
t

β
(2)
t

]

× (x− y) · n(y)ϕt(y)

π|x− y|4
dΓ(y) =:

[
b11;s′t b12;s′t
b21;s′t b22;s′t

]
.

Therefore. element-matrix of Kh-block in (22) is

[
−b11;s′t −b12;s′t
−b21;s′t −b22;s′t

]
and, ob-

viously, symmetric.
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Similarly, we get for K ′
h-block

⟨K ′
hαsws, ϕt′⟩ = −

∫
π̄t′

ϕt′(x)dΓ(x)

∫
πs

[
(x1 − y1)

2 (x1 − y1)(x2 − y2)
(x2 − y2)(x1 − y1) (x2 − y2)

2

]

× (x− y) · n(x)
π|x− y|4

dΓ(y) =:

[
a11;t′s a12;t′s
a21;t′s a22;t′s

][
α
(1)
s

α
(2)
s

]
.

Here

a11;t′s = −
∫
π̄t′

ϕt′(x)dΓ(x)

∫
πs

(x1 − y1)
2 (x− y) · n(x)

π|x− y|4
dΓ(y)

= −
∫
πs

dΓ(y)

∫
π̄t′

(x1 − y1)
2 (x− y) · n(x)

π|x− y|4
ϕt′(x)dΓ(x)

= −
∫
πs

dΓ(x)

∫
π̄t′

(y1 − x1)
2 (y − x) · n(y)

π|y − x|4
ϕt′(y)dΓ(y)

=

∫
πs

dΓ(x)

∫
π̄t′

(x1 − y1)
2 (x− y) · n(y)

π|x− y|4
ϕt′(y)dΓ(y) = b11;st′ ,

similarly,

a12;t′s = b12;st′ , a21;t′s = b21;st′ , a22;t′s = b22;st′

Therefore element-matrix[
a11;t′s a12;t′s
a21;t′s a22;t′s

]
=

[
b11;st′ b12;st′
b21;st′ b22;st′

]
is symmetric.

We denote for i = 2s′ − 1, j = 2N1 + 2t− 1, s = 1, . . . , N1, t = 1, . . . , N2[
−b11;s′t −b12;s′t
−b21;s′t −b22;s′t

]
=:

[
ai,j ai,j+1

ai+1,j ai+1,j+1

]
(a1)

and for i′ = 2N1 + 2t′ − 1, j′ = 2s− 1, s = 1, . . . , N1, t
′ = 1, . . . , N2[

a11;t′s a12;t′s
a21;t′s a22;t′s

]
=:

[
ai′,j′ ai′,j′+1

ai′+1,j′ ai′+1,j′+1

]
. (a2)

Then element-matrices (a1) and (a2) are symmetric, respectively, moreover if
s′ = s, t = t′ then i = 2s− 1 = j′, j = 2N1 + 2t′ − 1 = i′ and thus[

b11;st′ b12;st′

b21;st′ b22;st′

]
=

[
b11;s′t b12;s′t
b21;s′t b22;s′t

]
=

[
−ai,j −ai,j+1

−ai+1,j −ai+1,j+1

]
,
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[
a11;t′s a12;t′s
a21;t′s a22;t′s

]
=

[
ai′,j′ ai′,j′+1

ai′+1,j′ ai′+1,j′+1

]
=

[
aj,i aj,i+1

aj+1,i aj+1,i+1

]
.

For all i, j combining element-matrices

[
−ai,j −ai,j+1

−ai+1,j −ai+1,j+1

]
we get block (−AKh

),

and combining element-matrices

[
aj,i aj,i+1

aj+1,i aj+1,i+1

]
block (AT

K′
h
). From (a2) we

have AK′ = −AT
K .

Collecting results we have that in the real coefficient matrix A :=

[
AVh

AKh

AK′
h

ADh

]
blocks AVh

and ADh
are, respectively, symmetric, and AKh

and AK′
h
are block

skewsymmetric.

A3. Explain on Mapping properties of the boundary integral Opera-
tors

For Stokes flow problem it was proved that mappings of the boundary integral
operators

V : H−1/2(Γ) → H1/2(Γ), K : H1/2(Γ) → H1/2(Γ), D : H1/2(Γ) → H−1/2(Γ)

are continuous(cf. [11], Lemma 5.6.4, where the operators V,K,D are denoted
γ0V, γ0W, D, respectively). For elastostatic problem which correspond to the
Stokes problem when the Poisson ratio tends to 1/2, it holds thatK ′ : H−1/2(Γ) →
H−1/2(Γ) is continuous(cf. [6], Theorem 2 for s = 0). These properties are ob-
tained by using solvability and regularity of associated transmission problems(cf.
[11], 5.6.2). Note that for the potential problem also above properties are held. In
the case of 2-D potential problem we explain only for simple layer boundary inte-
gral operator V , the integral kernel of which is 1

π log 1
|x−y| (refer to [2] Chapter 7).

Denoting by C the circumstance of unit circle about the origin, let us introduce 2π-
periodic parameter as x = (cos t, sin t), y = (cos s, sin s), (x, y) ∈ C, t, s ∈ [0, 2π].
Now, choose arbitrary density σ(y) ∈ L2(C). Then σ(y) = σ((cos s, sin s)) =: φ(s)
and

V σ(x) = V φ(t) =
1

2π

2π∫
0

log
1

|(cos t− cos s)2 + (sin t− sin s|2)|1/2
φ(s)ds

=
1

π

2π∫
0

log
1

| sin2 t−s
2 |1/2

φ(s)ds =
1

π

2π∫
0

log
2e−1/2

|2e−1/2 sin t−s
2 |

φ(s)ds

=
1

π

2π∫
0

log
1

|2e−1/2 sin t−s
2 |

φ(s)ds+
1

π

2π∫
0

(log(2)− 1/2)φ(s)ds

=: V0φ(s) + V1φ(s),
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where V0 is principal operator and, obviously, V0φ and V1φ are ,respectively, 2π−
periodic functions and belong to L2(0, 2π) .

For any real number r ≥ 0, define Hr(2π) to be the set of all 2π− periodic
functions φ ∈ L2(0, 2π) for which

∥φ∥r =
1√
2π

[
|φ̂(0)|2 +

∑
|m|>0

|m|2r|φ̂(m)|2
]1/2

< ∞,

where φ̂(m) is Fourier coefficient of φ(s), that is

φ̂(m) =
1√
2π

2π∫
0

φ(s)e−imsds.

It holds (cf. [2],(7.2.74)) that

V0φ(t) =
1√
2π

(
φ̂(0) +

∑
|m|>0

φ̂(m)

|m|
eimt

)
.

Then, for r ≥ 0 it holds that

∥V0φ∥r+1 =
1√
2π

[
|φ̂(0)|2 +

∑
|m|>0

|m|2r+2| φ̂(m)

|m|
|2
]1/2

=
1√
2π

[
|φ̂(0)|2 +

∑
|m|>0

|m|2r|φ̂(m)|2
]1/2

= ∥φ∥r,

which implies that

V0 : Hr(2π) → Hr+1(2π)− isomorphism.

This estimate is extended to allow r < 0 by duality, therefor, for r = −1/2 give

V0 : H−1/2(2π) → H1/2(2π),

and, taking account of V1φ = const,

V : H−1/2(2π) → H1/2(2π).

This result lead to

V : H−1/2(C) → H1/2(C),

moreover, for smooth boundary Γ

V : H−1/2(Γ) → H1/2(Γ),
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which all are continuous.

A4. Calculation of hypersingular integrals

A4.1. Calculation of matrix element ⟨Dhβtϕt, ϕt′⟩ , t = t′

First we calculate the integrals I1(βt), I2(βt).

I1(βt) =

= βt

zt∫
zt−1

ϕt(ς)dΓ(ς)

zt∫
zt−1

(
1

(ς − z)2
n(z)n(ς) +

1

(ς̄ − z̄)2
n(z)n(ς)

)
ϕt(z)dΓ(z).

(a3)

By (32)-(34) in subsection 3.2 we have

z = zt−1 + ξet−1, ϕt(z) = ξ, n(z) = −iet−1/Lt−1, dΓ(z) = Lt−1dξ,

ς = zt−1 + ηet−1, ϕt(ς) = η, n(ς) = −iet−1/Lt−1, dΓ(ς) = Lt−1dη. (a4)

Now, let us apply boundary limit method for calculation of I1(βt). Taking a
point ςε = ς + εLt−1n(ς) apart ς, by variable change (a4) we have

ςε = zt−1 + ηet−1 + εLt−1(−iet−1/Lt−1) = zt−1 + (η − iε)et−1,

ςε − z = zt−1 + (η − iε)et−1 − (zt−1 + ξet−1) = ξet−1 + (η − iε)et−1.

Denote by Iε1(βt) the regular integral obtained by substituting ςε − z instead
of ς − z in integral I1(βt) of (a3), that is,

Iε1(βt) =

βt

zt∫
zt−1

ϕt(ς)dΓ(ς)

zt∫
zt−1

(
1

(ςε − z)2
n(z)n(ς) +

1

(ς̄ε − z̄)2
n(z)n(ς)

)
ϕt(z)dΓ(z).

(a5)
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Then, by (a4) we have

Iε1(βt) = βt

zt∫
zt−1

ηLt−1dη×

×
zt∫

zt−1

(
−et−1et−1/(Lt−1Lt−1)

((η − iε− ξ)et−1)2
+

−ēt−1ēt−1/(Lt−1Lt−1)

((η + iε− ξ)ēt−1)2

)
ξLt−1dξ

= βt(−1)

1∫
0

ηdη

1∫
0

ξdξ

(
1

(η − iε− ξ)2
+

1

(η + iε− ξ)2

)
= βt(−1)

(
1−

(
−1 + (iε)2

)
log
(
− (iε)

2
)
+
(
−1 + (iε)2

)
log
(
1− (iε)2

))
= βt(−1)

(
1− (−1− ε2) log(ε2) + (−1− ε2) log(1 + ε2)

)
.

The limit as ε → 0 is

I1(βt) = −βt − βt log(ε
2), (a6)

where − log(ε2) is divergent term.
By the same way we can calculate Ii(βt), i = 2, 3, 4.

I2(βt) = βt
1

2

(
2− et−1

et
log(et−1)−

(
2 +

et
et−1

)
log(et)

+

(
2 +

et−1

et
+

et
et−1

)
log(et−1 + et)−

ēt−1

ēt
log(ēt−1)

−
(
2 +

ēt
ēt−1

)
log(ēt) +

(
2 +

ēt−1

ēt
+

ēt
ēt−1

)
log(ēt−1 + ēt)

)
+ βt log(ε

2)

which is sum of the finite integral value and divergent term βt log(ε
2).

I3(βt) = βt
1

2

(
2− et

et−1
log(et)−

(
2 +

et−1

et

)
log(et−1)

+

(
2 +

et−1

et
+

et
et−1

)
log(et + et−1)−

ēt
ēt−1

log(ēt)−
(
2 +

ēt−1

ēt

)
log(ēt−1)

+

(
2 +

ēt−1

ēt
+

ēt
ēt−1

)
log(ēt + ēt−1)

)
+ βt log(ε

2),

I4(βt) = βt(−1)− βt log(ε
2).
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Next, we calculate Ik(β̄t), k = 1, 2, 3, 4.

I1(β̄t) = β̄t

zt∫
zt−1

ϕt × (ς)dΓ(ς)

×
zt∫

zt−1

(
n(z)n(ς) + n(z)n(ς)

(ς̄ − z̄)2
+

2(ς − z)

(ς̄ − z̄)3
n(z)n(ς)

)
ϕt(z)dΓ(z)

= β̄t

1∫
0

ηLt−1dη ×
1∫

0

(
1

((η − ξ)ēt−1)
2

(
ēt−1et−1

Lt−1Lt−1
+

et−1ēt−1

Lt−1Lt−1

)

+
2(η − ξ)et−1

((η − ξ)ēt−1)
3

−ēt−1ēt−1

Lt−1Lt−1

)
ξLt−1dξ

= β̄t

1∫
0

ηdη

1∫
0

(
et−1/ēt−1 + et−1/ēt−1

(η − ξ)2
− 2(η − ξ)et−1/ēt−1

(η − ξ)3

)
ξdξ = 0.

I2(β̄t) = β̄t
1

2

(
3
et−1

ēt−1
+

et
ēt

−
(
etēt−1

ē2t
− et−1

ēt

)
log(ēt−1)

+

(
et

ēt−1
− et−1ēt

ē2t−1

)
log(ēt)

+

(
etēt−1

ē2t
− et−1

ēt
− et

ēt−1
+

et−1ēt
ē2t−1

)
log(ēt−1 + ēt)

)
.

I3(β̄t) = β̄t
1

2

(
3
et
ēt

+
et−1

ēt−1
−
(
et−1ēt
ē2t−1

− et
ēt−1

)
log(ēt)

+

(
et−1

ēt
− etēt−1

ē2t

)
log(ēt−1)

+

(
et−1ēt
ē2t−1

− et
ēt−1

− et−1

ēt
+

etēt−1

ē2t

)
log(ēt + ēt−1)

)
,

I4(β̄t) = 0.

A.4.2. calculation of matrix element ⟨Dhβtϕt, ϕt′⟩ , |t− t′| = 1

Among integrals in (43), I2(βt) and I2(β̄t), being element-coincident integral,
may contain divergent terms. Calculating I2(βt) by the boundary limit method,
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we get

Iε2(βt) =

= βt

zt+1∫
zt

ϕt+1(ς)dΓ(ς)

zt+1∫
zt

(
1

(ςε − z)2
n(z)n(ς) +

1

(ς̄ε − z̄)2
n(z)n(ς)

)
ϕt(z)dΓ(z)

= βt

1∫
0

ηdη

1∫
0

(
−1

(η − iε− ξ)2
+

−1

(η + iε− ξ)2

)
(1− ξ)dξ

= βt
1

2

(
2− log

(
−(iε)2

)
−
(
−1 + (iε)2

)
log
(
−(iε)2

)
+ log

(
1− (iε)2

)
+ (iε)2 log

(
1− (iε)2

)
− (iε)2 log

(
−(iε)2

)
+
(
−1 + (iε)2

)
log
(
1− (iε)2

))
.

Here, − log
(
−(iε)2

)
= − log(ε2) is divergent term and

−
(
−1 + (iε)2

)
log
(
−(iε)2

)
= +(1 + ε2) log(ε2) → + log(ε2)(ε → 0)

is also divergent term, but these divergent terms cancel each other out. Also,

− (iε)2 log
(
−(iε)2

)
= ε2 log(ε2) → 0 as ε → 0,

log
(
1− (iε)2

)
+ (iε)2 log

(
1− (iε)2

)
+
(
−1 + (iε)2

)
log
(
1− (iε)2

)
= log(1 + ε2)− ε2 log(1 + ε2) + (−1− ε2) log(1 + ε2) → 0, as ε → 0.

Therefore, we get that I2(βt) = lim
ε→0

Iε2(βt) = βt.

I2(β̄t) is element-coincident integral too, but have no divergent term as former
subsection. Other element integrals are weak singular because their interior and
exterior integral intervals intersect only at end point. We see I1(βt) only.

I1(βt) = βt

zt+1∫
zt

ϕt+1(ς)dΓ(ς)

zt∫
zt−1

(
n(z)n(ς)

(ς−)2
+

n(z)n(ς)

(ς̄ − z̄)2

)
ϕt(z)dΓ(z)

= βt

1∫
0

ηdη

1∫
0

(
−etet−1

(ηet + (1− ξ)et−1)2
+

−ētēt−1

(ηēt + (1− ξ)ēt−1)
2

)
ξdξ

= βt
1

2

(
− 2− et

et−1
log(et) +

(
et

et−1
− et−1

et

)
log(et + et−1)−

ēt
ēt−1

log(ēt)

+

(
ēt

ēt−1
− ēt−1

ēt

)
log(ēt + ēt−1) +

et−1

et
log(et−1) +

ēt−1

ēt
log(ēt−1)

+

(
η

et−1
(ηet) log(−ηet) +

η

ēt−1
(ηēt) log(−ηēt)

)
η=0

)
.
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Since
(

η
et−1

(ηet) log(−ηet) +
η

ēt−1
(ηēt) log(−ηēt)

)
η=0

= 0, we get

I1(βt) = βt
1

2

(
− 2− et

et−1
log(et) +

et−1

et
log(et−1)−

ēt
ēt−1

log(ēt)

+
ēt−1

ēt
log(ēt−1) +

(
et

et−1
− et−1

et

)
log(et + et−1)

+

(
ēt

ēt−1
− ēt−1

ēt

)
log(ēt + ēt−1)

)
.
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